이번 챕터에서는 미분방정식 공부 전의 준비 운동으로서 주로 리만 적분의 정의와 Fundamental Theorem of Calculus(FToC)을 포함한 수학 이론들에 대해 주로 다뤄볼 것이다. 이 내용들은 다른 곳에도 매우 많이 사용되니 눈여겨 볼 필요가 있다.

Definition (Step Functions)

A function \(f:[a,b]\rightarrow \mathbb{R}\) is called a step function if it is piecewise constant, i.e., if we have a partition \(P=(x_0,x_1,\ldots,x_n)\) of \([a,b]\) such that
\[ a=x_0<x_1<\cdots <x_n=b. \] and \(f\) is constant on each half open interval \([x_{i-1}, x_i)\) with \(1\le i\le n\). For the step function \(f\), we define the integral to be \[ \int_a^b f(x)dx =\sum_{i=1}^n f(x_i)(x_i-x_{i-1}), \]



Lemma

If \(f\) and \(g\) are step functions on the interval \([a,b]\) with \(f(x)\le g(x)\) for all \(x\in [a,b]\), then \[ \int_a^b f(x)dx \le \int_a^b g(x)dx. \]



Definition (Upper and Lower Integrals)

The lower integral of a function \(f\) on the interval \([a,b]\) is defined by \[ L(f,a,b)=\sup\Big\{\int_a^b s(x)dx : s \mbox{ is a step function with }s\le f \Big\}. \] Similarly, the upper integral of \(f\) is defined to be \[ U(f,a,b)=\inf\Big\{ \int_a^b t(x)dx : t \mbox{ is a step function with } t\ge f\Big\}. \]



Lemma

For any bounded function \(f:[a,b]\rightarrow \mathbb{R}\), we have \(L(f,a,b)\le U(f,a,b)\).



Definition

The function \(f\) is said to be Riemann integrable if its lower and upper integral are the same, i.e., \[ \int^b_a f(x)dx=L(f,a,b)=U(f,a,b) \]



Proposition

A function \(f:[a,b]→\mathbb{R}\) is Riemann integrable if for every \(\epsilon>0\) there exist step functions \(s,t:[a,b]→\mathbb{R}\) such that for all \(x\in[a,b]\), \(s(x)\le f(x)\le t(x)\) and \[ ∫^b_at(x)dx−∫^b_a s(x)dx<ϵ. \]



Theorem (The Fundamental Theorem of Calculus)

Let \(f:[a,b]\rightarrow \mathbb{R}\) be a continuous and real-valued function. Then, \[ \frac{d}{dx}\int^x_a f (s)ds = f(x). \]



Corollary

Let \(f:[a,b]\rightarrow \mathbb{R}\) be a continuous and real-valued function, and let \(F\) denote an anti-derivative of \(f\) in \([a,b]\). Then, \[ \int_{a}^{b}f(t) dt=F(b)-F(a). \]

back