Remark

The general non-sqeuqntial decision theory consists of three basic elements;

  1. parameter space : A nonempty set \(\Theta\), possible states of nature,

  2. actions : A nonempty set \(A\) available to statisticians,

  3. loss function : \(L(\theta,a)\), mapping from \(\Theta\times A\) to \(\mathbb{R}\).

  

Definition (Non-randomized Decision Rule)

Consider a function \(\delta:\mathcal{X}\rightarrow\Theta\). If \(X=x\) is observed, and \(\theta\) is the true parameter, the loss incurred is \(L(\theta, \delta(x))\). Note that \(L(\theta, \delta(X))\) is a random variable. The average loss or risk is given by \[ R(\theta, \delta)= E_\theta [L(\theta, \delta(X))]=\int L(\theta, \delta(x))f_\theta(x)dx \mbox{ or } \sum L(\theta, \delta(x))f_\theta(x). \]  

  

Remark

The fundamental problem of decision theory is to choose the best decision rule that has the smallest risk uniformly for all \(\theta\in \Theta\). But, such a decision rule usually does not exist.

  

아래 두 정의는 Bayes principle에 대한 설명

Definition

The Bayes risk of a decision rule \(\delta\) w.r.t a prior distribution \(\xi\) denoted by \(r(\xi,\delta)\) is defined by \[ r(\xi,\delta)=E[R(\omega,\delta)], \] where \(\omega\) is a random variable assuming values \(\theta\in \Theta\) with a distribution \(\xi\).

  

Definition

A decision rule \(\delta_\xi\) is Bayes w.r.t a prior distribution \(\xi\) if \[ r(\xi, \delta_\xi)=\inf_{\delta\in D}r(\xi,\delta). \]

  

Definition

A decision rule \(\delta_\xi\) is -Bayes w.r.t a prior distribution \(\xi\) if for \(\epsilon > 0\), \[ r(\xi, \delta_\xi)\le\inf_{\delta\in D}r(\xi,\delta)+\epsilon. \]

  

아래부터는 Minimax

Definition(Minimax principle)

A decision rule \(\delta_1\) is preferred to a decision rule \(\delta_2\) if \[ \sup_\theta R(\theta, \delta_1) <\sup_\theta R(\theta, \delta_2) \]

  

Definition(Minimax)

A decision rule \(\delta_D\) is Minimax if \[ \sup_{\theta\in\Theta} R(\theta, \delta_D) = \inf_{\delta\in D} \sup_{\theta\in\Theta} R(\theta, \delta). \] * Minimax는 모든 액션 \(\delta\in D\)중 worst인 경우의 Risk가 가장 작은 Action이다.

Definition(\(\epsilon\)-Minimax)

A decision rule \(\delta_D\) is \(\epsilon\)-Minimax if for \(\epsilon > 0\), \[ \sup_{\theta\in\Theta} R(\theta, \delta_D) \le \inf_{\delta\in D} \sup_{\theta\in\Theta} R(\theta, \delta)+\epsilon. \]   

Remark(Randomized Decision Rules)

Suppose \(D\) is the space of all non-randomized decision rules. We extend \(D\) to \(D^*\) which is the space of all probability distributions over \(D\), e.g., suppose \(D=\{\delta_1.\delta_2,\delta_3,\delta_4\}\). A typical element of \(D^*\) is a probability distribution \(\delta^*\) such that \(\delta^*\) assigns probability \(\zeta_i\) to \(\delta_i\), \(\zeta_i\ge 0\), \(i=1,2,3,4\), \(\sum_i \zeta_i =1\).

In general, we write the risk function corresponding to \(\delta^*\) as \[ R(\theta,\delta^*)= E[R(\theta,Y)], \] where \(Y\) is a random variable assuming values in \(D\) with distribution given by \(\delta^*\).   

  

내용요약

통계학자들은 true nature \(\theta\)에 대해, 주어진 data인 \(X=x\)를 가지고 추정을 한다. 이를 Action이라고 명명하고 \(\delta(x)\)를 action이라 하자.

하지만 당연히 \(\theta\)\(\delta(x)\) 사이에 차이값이 존재하고 이를 Loss라고 하며 \(L(\theta,\delta(x))\)라 한다.

이 때 통계학자들의 목적은 이 Loss를 가장 적게 갖는 action \(\delta\)를 구하는 것이 목적이며 이는 \(E_\theta(L(\theta,\delta(X)))=R(\theta,\delta)\)를 최소로 만들어주는 \(\delta\)를 구하는 문제로 바뀐다.

하지만 이 \(\delta\)를 항상 구할 수 있는 것이 아니고 minimum 또는 infimum을 구할 수 없을 때가 존재한다. 때문에 이에 두가지 방법이 사용된다.

  1. \(\theta\)의 분포를 알고 있는 경우(prior) \(E[R(\theta,\delta)]\)가 최소값을 갖게하는 \(\delta\)를 선택(Bayes Principle),

  2. Worst Case 에서 가장 risk를 최소로 주는 \(\delta\)를 선택(Minimax).

  

back