요약:

  1. Weighted squared error loss에서의 Bayes estimator은 weighted posterior mean이다

    (squared error loss에서의 bayes action은 posterior mean이다).

  2. squared error loss에서, 주어진 action \(a\)가 unbiased estimator of \(\theta\)이고 Bayes risk\(=0\)라면 Bayes estimator이다.

    • 문제에서 \(\theta\)에 unbiased한 action을 주고, Bayes estimator인지를 보이라고 묻는다면 Bayes risk가 0임을 보이면 된다.



Remark(Squared Error Loss)

Assume that the prior distribution has finite second moment. Let \(m=\int_\theta\theta g(\theta)d\theta\) (prior mean of \(\xi)\), \(g\) being a prior pdf. Then, for no-data problem,

\[ r(\xi,a)=\int_\theta (\theta-a)^2g(\theta)d\theta=\int_\theta (\theta-m+m-a)^2g(\theta)d\theta=\int_\theta (\theta-m)^2g(\theta)d\theta + (m-a)^2 \ge \int_\theta (\theta-m)^2g(\theta)d\theta, \] with equality iff \(a=m\).

Thus, for the no-data problem, the Bayes estimator of \(\theta\) is \(a=m=\int_\theta\theta g(\theta)d\theta\), the prior mean.

If \(X=x\) is available, the Bayes estimator of \(\theta\) is \(\delta(x)=\int_\theta\theta P(\theta|X=x)d\theta\), the posterior mean.

 

  

매우 중요

Example

\(X_1,\ldots,X_n\stackrel{\text{iid}}{\sim}N(\theta,\sigma^2)\) where \(\theta\in \mathbb{R}\) is unknown, but \(\sigma^2>0\) is known. \[ f_\theta(x_1,\ldots,x_n)\propto e^{-\frac{1}{2\sigma^2}\sum(x_i-\theta)^2}=e^{-\frac{1}{2\sigma^2}\sum(x_i-\bar x+ \bar x-\theta)^2}=e^{-\frac{1}{2\sigma^2}\sum(x_i-\bar x)^2-\frac{n}{2\sigma^2}(\bar x-\theta)^2}\propto e^{-\frac{n}{2\sigma^2}(\bar x-\theta)^2} \] Suppose the prior pdf is \(N(\mu,\tau^2)\). Then, \[ P(\theta|x_1,\ldots x_n)\propto e^{-\frac{1}{2\sigma^2}n(\bar x-\theta)^2- \frac{1}{2\tau^2}(\theta-\mu)^2}= e^{-\frac{1}{2}\left\{\frac{n(\bar x-\theta)^2}{\sigma^2}- \frac{(\theta-\mu)^2}{\tau^2}\right\}} \] Note that \[\begin{eqnarray*} \frac{n(\bar x-\theta)^2}{\sigma^2}- \frac{(\theta-\mu)^2}{\tau^2}&\propto& \left( \frac{n}{\sigma^2}+\frac{1}{\tau^2} \right) \left(\theta-\frac{\frac{n\bar x_n}{\sigma^2}+ \frac{\mu}{\tau^2}}{\frac{n}{\sigma^2}+ \frac{1}{\tau^2}}\right) \\ \implies P(\theta|x_1,\ldots x_n) &\propto&\exp\left\{-\frac{1}{2}\left( \frac{n}{\sigma^2}+\frac{1}{\tau^2} \right)\left(\theta-\frac{\frac{n\bar x_n}{\sigma^2}+ \frac{\mu}{\tau^2}}{\frac{n}{\sigma^2}+ \frac{1}{\tau^2}}\right) \right\} \end{eqnarray*}\]

The posterior pdf is \[ \theta|x_1,\ldots,x_n\sim N\left(\frac{\frac{n\bar x_n}{\sigma^2}+ \frac{\mu}{\tau^2}}{\frac{n}{\sigma^2}+ \frac{1}{\tau^2}}, \frac{1}{\frac{n}{\sigma^2}+\frac{1}{\tau^2} }\right) \] Let \(B=\frac{\frac{\sigma^2}{n}}{\frac{\sigma^2}{n}+\tau^2}=\frac{\text{sample var}}{\text{sample var+prior var}}\). Then, \[ \theta|x_1,\ldots,x_n\sim N\left(\frac{\frac{n\bar x_n}{\sigma^2}+ \frac{\mu}{\tau^2}}{\frac{n}{\sigma^2}+ \frac{1}{\tau^2}}, \frac{1}{\frac{n}{\sigma^2}+\frac{1}{\tau^2} }\right)\equiv N(B\mu+(1-B)\bar x_n, B\tau^2) \]



매우 중요하다.

Remark (Quadratic Loss (Weighted Squared Error Loss))

Suppose \[ L(\theta,a)=w(\theta)(\theta-a)^2 \] where \(w(\theta)>0\) \(\forall \theta\in \Theta\). Assuming the prior pdf \(g(\theta)\) for the no-data problem, the Bayes estimate of \(\theta\) is obtained by minimizing \(\int w(\theta)(\theta-a)^2g(\theta)d\theta\) w.r.t \(a\), i.e., bayes risk. Now \[ \int w(\theta)(\theta-a)^2 g(\theta)d\theta=a^2\int w(\theta)g(\theta)d\theta-2a\int \theta w(\theta)g(\theta)d\theta+\int \theta^2 w(\theta)g(\theta)d\theta. \] This is minimized w.r.t. \(a\) for \(a=a_0\) where \[ a_0=\frac{\int \theta w(\theta)g(\theta)d\theta}{\int w(\theta)g(\theta)d\theta}. \]



If \(X\) is observed, \(r(\xi,a)=E[E(L(\theta,a)|X)]=\int w(\theta)(\theta-a)^2P(\theta|X)d\theta dx\) is minimized w.r.t \(a\) for \(a=a_0\) where \[ a_0=\frac{\int \theta w(\theta)P(\theta|X)d\theta}{\int w(\theta)P(\theta|X)d\theta}. \]




Remark (Absolute Error Loss)

\[ L(\theta,a)=|\theta-a| \] If the loss is absolute error, for the no-data problem, \(\int |\theta-a|g(\theta)d\theta\) minimized w.r.t \(a\) if \(a\) is a median of the prior distribution. When \(X=x\) is observed, the Bayes estimator is a median of the posterior distribution.




Theorem (Blackwell and Girshick)

Let \(\Theta\) be an open or closed interval in the real line, and let \(L(\theta,a)=w(\theta)(\theta-a)^2\) for all \(\theta\in \Theta\). If a Bayes estimator \(\delta_\xi(x)\) of \(\theta\) w.r.t. a prior \(\xi\) is also an unbiased estimator of \(\theta\), then the Bayes risk of \(\delta_\xi\) w.r.t \(\xi\) is \(r(\xi,\delta_\xi)=0\).







back