요약: action \(a\)\(\{\)complete sufficient statistic of \(\theta=T\)\(\}\)의 함수라면, Bayes estimator이다.



Definition

A real valued function \(f(x)\) defined on a convex subset \(S\) of \(\mathbb{R}^k\) is said to be convex if for \(x\in S\), \(y\in S\) and for any \(\alpha\in [0,1]\), \[ f(\alpha x+(1-\alpha)y)\le \alpha f(x)+(1-\alpha)f(y). \]




Remark

Typically the loss function we consider is of the form \[ L(\theta,a)=||\theta-a||^r,\mbox{ }\mbox{ }\mbox{ } r\le 1, \] which for fixed \(\theta\) are convex function of \(a\).




Theorem

Let \(\gamma(\theta)\) be a parametric function, not necessary estimable. Let \(T\) be a complete sufficient statistic for \(\theta\). Then, there exists a unique estimator \(\gamma(\theta)\) based on \(T\) which has the smallest risk under any convex loss among all estimators of \(\gamma(\theta)\).


\[\begin{eqnarray*} R(\gamma(\theta),g(X))&=&E_\theta[L(\gamma(\theta),g(X) )] \\ &=& E_\theta\left[\mbox{ }E[L(\gamma(\theta),g(X))|T]\mbox{ }\right]\\ &\ge& E_\theta\left[\mbox{ }L[E(\gamma(\theta),g(X))|T]\mbox{ }\right]\mbox{ }\mbox{ (}L\mbox{ is convex loss)}\\ &=& E_\theta\left[\mbox{ }L\left(\gamma(\theta),E[g(X)|T]\right)\mbox{ }\right]\mbox{ }\mbox{ (}\gamma(\theta)\mbox{ is fixed)}\\ &=& E_\theta\left[\mbox{ }L\left(\gamma(\theta),h(T)\right)\mbox{ }\right]. \end{eqnarray*}\]




back