Notation: \(\theta\)의 range를 \(\Theta\), \(\Theta^*\)를 the class of all prior distributions on \(\Theta\)라 하자.

또한 \(\delta_0^*\)를 minimax, i.e., \(\delta_0^*=\inf_{\delta^*\in D}\sup_{\theta\in\Theta}R(\theta,\delta^*)\)라 하자.

Lemma

For the case of randomized decision rules, \[ \sup_{\theta\in \Theta} R(\theta, \delta^*)=\sup_{\xi\in\Theta^*}\int_\Theta R(\theta, \delta^*)d\xi\stackrel{\text{Def}}= \sup_{\xi\in\Theta^*}r(\xi,\delta^*). \]

\[ r(\xi,\delta^*)= \int_{\Theta^*} R(\theta,\delta^*)d\xi\le \int_{\Theta^*} \sup_{\theta\in \Theta}R(\theta,\delta^*)d\xi=\sup_{\theta\in \Theta}R(\theta,\delta^*)\int_{\Theta^*} d\xi=\sup_{\theta\in \Theta}R(\theta,\delta^*)\\ \implies \sup_{\xi\in\Theta^*} r(\xi,\delta^*)\le \sup_{\theta\in \Theta}R(\theta,\delta^*). \] 우변이 \(\xi\)에 depend하지 않기 때문에, \(\sup_{\theta}R(\theta,\delta^*)=R(\theta',\delta^*)\)라고 놓고, \(\xi'\)\(\theta'\)의 prior라고 하자\((\xi'(\{\theta'\})=1)\). 그렇다면 \[ R(\theta',\delta^*)=\int_{\Theta^*} R(\theta,\delta^*)d\xi'\le \sup_{\xi'\in\Theta^*}\int_{\Theta^*}R(\theta,\delta^*)d\xi' \] i.e., \[ \sup_{\theta\in\Theta}R(\theta,\delta^*)\le \sup_{\xi\in\Theta}r(\xi,\delta^*). \]



Remark

Note that \[ \inf_{\delta^*\in D^*}\sup_{\xi\in\Theta^*}r(\xi,\delta^*)= \sup_{\xi\in\Theta^*}\inf_{\delta^*\in D^*}r(\xi,\delta^*). \]

Thus, we have \[ \sup_{\xi\in\Theta^*}\inf_{\delta^*\in D^*}r(\xi,\delta^*)=\inf_{\delta^*\in D^*}\sup_{\theta\in\Theta}R(\theta,\delta^*)=\mbox{minimax }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{(by above lemma)} \]




Definition

A distribution \(\xi_0\in\Theta^*\) is said to be least favorable if \[ \inf_{\delta^*\in D^*}r(\xi_0,\delta^*)=\sup_{\xi\in\Theta^*}\inf_{\delta^*\in D^*}r(\xi,\delta^*). \]



Theorem (The Bayes Method)

Suppose that there is a distribution \(\xi\) over \(\Theta^*\) s.t. \[ r(\xi,\delta_\xi)=\int_{\Theta^*} R(\theta,\delta_\xi)d\xi=\sup_{\theta\in \Theta}R(\theta,\delta_\xi). \] Then,

  1. \(\delta_\xi\) is minimax;

  2. If \(\delta_\xi\) is unique Bayes estimator w.r.t \(\xi\), then it is the unique minimax procedure;

  3. \(\xi\) is least favorable.


  1. Note: \(\delta^*\)를 any decision rule이라 하자. 그렇다면 주어진 가정에 의해 \[\begin{eqnarray*} \sup_{\theta\in\Theta}R(\theta,\delta_\xi)&=&\int_{\Theta^*}R(\theta,\delta_\xi)d\xi\\ &\le& \int_{\Theta^*}R(\theta,\delta^*)d\xi \mbox{ }\mbox{ (since } \delta_\xi \mbox{ is Bayes w.r.t }\xi)\\ &\le& \sup_{\theta\in \Theta} R(\theta,\delta^*) \end{eqnarray*}\]\(\delta_\xi\)는 minimax이다.

  2. 1번에서의 첫 \(\le\)\(<\)로 바꿔주면 된다.

  3. \(\xi^*\)를 또다른 distribution으로, \(\delta_{\xi^*}\)를 그에 대응하는 Bayes estimator라 하자. 그렇다면 \[\begin{eqnarray*} r(\xi^*,\delta_{\xi^*})&=&\int_{\Theta^*}R(\theta,\delta_{\xi^*})d\xi^*\\ &\le&\int_{\Theta^*}R(\theta,\delta_{\xi})d\xi^* \mbox{ }\mbox{ (since } \delta_{\xi*} \mbox{ is Bayes w.r.t }\xi^*)\\ &\le&\sup_{\theta\in\Theta} R(\theta,\delta_{\xi})\\ &=& r(\xi,\delta_\xi). \end{eqnarray*}\]
    \(\xi^*\)는 any distribution without \(\xi\)이기 때문에 \(\xi\)는 least favorable이다.




매우 중요

Corollary

If a Bayes rule \(\delta_\xi\) w.r.t. a prior \(\xi\) has constant risk \(R(\theta,\delta_\xi)=r\) for all \(\theta\in \Theta\), then \(\delta_\xi\) is minimax and \(\xi\) is least favorable.




Example

\(X_1,\ldots X_n\stackrel{\text{iid}}{\sim}N(\theta,1)\)일 때 \(\bar X_n\)\(\theta\)의 불편추정량이다. 하지만 \(E[(\bar X_n-\theta)^2]=\frac{1}{n}\)이다. 때문에 Squared error loss를 가정했을 때, \(\bar X_n\)의 Bayes risk는 prior가 어떤 것이든지간에 \(\frac{1}{n}\ne 0\)이다. 때문에 \(\bar X_n\)은 Bayes estimator가 될 수 없다.


하지만 \(R(L(\theta,\bar X_n))= E[(\bar X_n-\theta)^2]=\frac{1}{n}\)로 constant risk를 갖기 때문에 \(\bar X_n\)은 minimax이다(Bayes estimator는 아니지만 minimax는 된다).



Theorem

Let \(\{\xi_1,\xi_2,\ldots\}\) be a sequence of prior distributions on \(\Theta\). Let \(\delta_m=\delta_{\xi_m}\) be a Bayes estimator w.r.t \(\xi_m\) having Bayes risk \(r_m=r(\xi_m,\delta_{\xi_m})\). If \(\delta_0\) is a rule with \(\sup_{\theta\in \Theta}R(\theta,\delta_0)=r\) and \(\lim_{m\rightarrow \infty}r_m\ge r\), then \(\delta_0\) is Minimax.





back