Suppose \(X_1,\ldots,X_n\stackrel{\text{iid}}\sim N(\theta_i,1)\)(multiparameters).
Suppose now one considers simultaneous estimation of \(p(\ge 2)\) independent normal means. The sample mean is once again the natural estimator. However, while the estimator is admissible for \(p=2\) it is inadmissible for \(p\ge 3\) for a wide class of losses.
First, note that sum of squared error loss is \[ L(\theta,a)=||\theta-a||^2=\sum_{i=1}^n(\theta_i-a_i)^2.\tag{*} \] Note that \(||X||^2\sim \chi_p^2\left(\frac{1}{2}||\theta||^2\right)\). Hence \[ E_\theta [||X||^2]= E_\theta\left[\sum_{i=1}^p X_i^2 \right]=\sum_{i=1}^p (1+\theta_i^2)=p+||\theta||^2. \] Thus, for large \(p\), \(||X||^2\) overestimates \(||\theta||^2\).
Indeed, for large \(p\), \(||X||\) is observed, one would expect \(||\theta||^2\) to be close to \(||X||^2-p\).
This suggests shrinking in some way the usual estimator \(X\) of \(\theta\).
Note that \(X\) is a generalized Bayes estimator of \(\theta\) under the loss \(L(\theta,a)=||\theta-a||^2\). Then, there exists \(a,b\in \mathbb{R}\) s.t. \(\left(1-\frac{b}{a+||X||^2}\right)X\) dominates \(X\) for \(p\ge 3\). in the explicit manner, the James-Stein estimator is \[ \delta(X)=\left(1-\frac{p-2}{||X||^2} \right)X \] which dominates \(X\) for \(p\ge 3\).
The restriction to one observation does not involve any loss of generality since if \(X_1,\ldots,X_n\stackrel{\text{iid}}\sim N(\theta,I_p)\), the minimal sufficient staitstic \(\bar X_n\sim N(\theta,\frac{1}{n}I_p)\). For \(n\) observations, the James-Stein estimator of \(\theta\) is \[ \delta(\bar X_n)= \left(1-\frac{p-2}{n||\bar X_n||^2}\right)\bar X_n. \]
Let \(X_n\sim N(\theta,I_p)\). Assume \(\theta\sim N(0,\tau^2I_p)\) where \(\tau^2>0\). Then, \[ \theta|X=x\sim N((1-B)x, B\tau^2I), \mbox{ where }B=\frac{1}{1+\tau^2}. \] Now assuming the loss \((*)\), the Bayes estimator of \(\theta_i\) is \[ E[\theta_i|X_i=x_i]=(1-B)x_i, \mbox{ }1\le i\le p. \] Suppose now \(\tau^2\) is unknown, and it has to be estimated from the data. Note first that marginally(after integrating out \(\theta\)), \(X\sim N(0,(1+\tau^2)I_p)\). Thus, marginally \[ ||X||^2=\sum_{i=1}^2X_i^2\sim (1+\tau^2)\chi_p^2. \] For \(p\ge 3\), \[ E\left[ \frac{1}{||X||^2}\right]=\frac{1}{(1+\tau^2)(p-2)},\mbox{ }\mbox{ i.e., }\mbox{ } E\left[ \frac{p-2}{||X||^2}\right]=\frac{1}{1+\tau^2}. \] Substituting the estimator \(\frac{p-2}{||X||^2}\) for \(B=\frac{1}{1+\tau^2}\), one gets the James-Stein estimator \[ \delta^0(X)=\left(1-\frac{p-2}{||X||^2}\right)X\mbox{ }\mbox{ }\mbox{ of }\theta. \]
Suppose now the prior distribution for \(\theta\sim N(\mu, \tau^2I_p)\) instead of \(N(0,\tau^2I_p)\), i.e., \[
\theta|X=x\sim N((1-B)x+B\mu, B\tau^2I_p),\mbox{ }\mbox{ }\mbox{ where }B=\frac{1}{1+\tau^2}.
\] Again, assuming the loss \((*)\), the Bayes estimator of \(\theta_i\) is given by \[
E(\theta_i|X_i=x_i)=\frac{x_i+\frac{\mu_i}{\tau^2}}{1+\frac{1}{\tau^2}}=B\mu_i+(1-B)x_i=\frac{\tau^2}{\tau^2+1}x_i+\frac{1}{1+\tau^2}\mu_i=\mu_i+\left(1-\frac{1}{1+\tau^2}\right)(x_i-\mu_i)
\] Suppose that \(\mu\) is known, but \(\tau^2>0\) is unknown and it has to be estimated from the data. Note that marginally, \[
X\sim N(\mu,(1+\tau^2)I_p).
\] Hence, marginally, \(||X-\mu||^2\sim (1+\tau^2)\chi_p^2\). Thus, \[
E\left[ \frac{p-2}{||X-\mu||^2} \right]=\frac{1}{1+\tau^2}.
\] Substituting this estimator for \(B=\frac{1}{1+\tau^2}\), one gets the estimator \[
\delta^1(X)=\mu+\left(1- \frac{p-2}{||X-\mu||^2}\right)(X-\mu)\mbox{ }\mbox{ }\mbox{ for }\theta.
\]
이 예제에서 squared error loss일 때 \(X\)는 constant risk \(\frac{1}{n}\)을 가지므로 Minimax였다. 때문에 James Stein estimator는 X를 dominating하므로, 이 또한 minimax이다.