Remark

Recall for a GLM, the likelihood equations are \[ \sum_{i=1}^N \frac{(y_i-\mu_i)x_{ij}}{\text{Var}(Y_i)}\left(\frac{d\mu_i}{d\eta_i}\right)=0, \mbox{ }j=0,1,\ldots,p. \]

For a binary GLM, \(n_iY_i\sim \text{Bin}(n_i,\pi_i)\), where \(\pi_i=F(\sum_j \beta_jx_{ij})\) or \(\mu_i=\pi_i=F(\eta_i)\) for some c.d.f \(F\).

So, \(\frac{\mu_i}{\eta_i}=f(\eta_i)\) where \(f(u)=\frac{dF(u)}{du}\).

 

Likelihood equations are \[ \sum_{i=1}^N \frac{(y_i-\mu_i)x_{ij}}{\text{Var}(Y_i)}\left(\frac{d\mu_i}{d\eta_i}\right)= \sum_{i=1}^N \frac{\{y_i-F(\sum_j \beta_jx_{ij})\}x_{ij} f(\sum_j \beta_jx_{ij})}{F(\sum_j \beta_jx_{ij})\left\{1-F(\sum_j \beta_jx_{ij})\right\}/n_i }=0, \mbox{ }\mbox{ }j=0,1,\ldots,p. \]

  

Examples
  1. Identity link : \(F(u)=u, 0<u<1\) (uniform c.d.f)

    Model \(\pi_i=\sum_j \beta_jx_{ij}\) called linear probability model.

 

  1. Logit link : \(F(u)=\frac{e^u}{1+e^u}\)(logistic c.d.f)

    Model \(\pi_i=\frac{e^{\sum_j \beta_jx_{ij}}}{1+e^{\sum_j \beta_jx_{ij}}}\) called logit model.

 

  1. Probit link : \(F(u)=\Phi(u)\)(standard normal c.d.f)

    Model \(\pi_i= \Phi(\sum_j\beta_jx_{ij})\) is called probit model.

 

  1. log-log link : \(F(u)=\exp[-\exp(-u)]\) (c.d.f of extreme value distribution)

    Model \(\pi_i= \exp[-\exp(-\sum_j \beta_j x_{ij})] \iff \sum_j \beta_jx_{ij}=-\log (-\log \pi_i)\).

  

back