The binary GLM has form
\[\begin{eqnarray*} &&\pi_i=\exp\{-\exp(\sum_j \beta_j x_{ij})\}\\ &\iff& \log(-\log \pi_i) =\sum_j \beta_j x_{ij} \mbox{ : log-log link,}\\ &\mbox{ }& \log(-\log (1-\pi_i))= \sum_j \beta_j x_{ij} \mbox{ : complementary log-log link.} \end{eqnarray*}\]
Complementary log-log model for \(\pi_i\) = log-log model for \(1-\pi_i\).
암기하기 ←쉽게 말하자면, \(1-\pi_i\)를 \(\pi_i\)로 바꾸면 된다.
For the two complementary log-log model, we have \(\log\left\{-\log (1-\pi_i)\right\}\)-\(\log\left\{-\log (1-\pi_h)\right\}=\beta'(x_i-x_h)\). So \[ \frac{\log(1-\pi_i)}{\log(1-\pi_h)}=\exp\{ \beta'(x_i-x_h)\}\\ \iff 1-\pi_i= (1-\pi_h)^{\exp\{\beta'(x_i-x_h)\}}. \] So, \(P(\text{failure})\) at \(x_i\) is power \(\exp\{\beta'(x_i-x_h)\}\) of \(P(\text{failure})\) at \(x_h\).