Suppose given \(\pi\), \[ Y|\pi\sim \text{Bin}(n,\pi)\mbox{ }\mbox{ and }\mbox{ } \pi\sim \text{Beta}(\alpha,\beta), \] where \[ f(\pi;\alpha,\beta)=\frac{1}{B(\alpha,\beta)}\pi^{\alpha-1}(1-\pi)^{\beta-1}, \mbox{ } 0<\pi<1, \mbox{ }\alpha,\beta>0. \] Let \(\mu=\frac{\alpha}{\alpha+\beta}\), \(\theta=\frac{1}{\alpha+\beta}\). Then, \[ E(\pi)=\mu,\mbox{ } \text{Var}(\pi)=\mu(1-\mu)\frac{\theta}{1+\theta}. \] Unconditionally, \[\begin{eqnarray*} P(Y=y)&=&E[P(Y=y|\pi)]\\ &=&\int_0^1{n \choose y}\pi^y(1-\pi)^{n-y}\frac{1}{B(\alpha,\beta)}\pi^{\alpha-1}(1-\pi)^{\beta-1} d\pi\\ &=&\cdots={n \choose y}\frac{B(a+y, n+\beta-y)}{B(\alpha,\beta)},\mbox{ }y=0,1,\ldots,n. \end{eqnarray*}\] This is Beta-Binomial distribution and \[ E(Y)=n\mu, \mbox{ } \text{Var}(Y)=n\mu(1-\mu)\{ 1+(n-1)\theta/(1+\theta)\}. \]
즉 parameter에도 distribution을 걸어주고 marginal 분포를 구해내는 방법을 Mixture Modeling방법이라 한다(Bayesian idea).
위의 분산에서도 확인할 수 있다시피 Beta binomial은 \(n=1\)일 때는 일반 Binomial 과 같다.
Note : As \(\theta=\frac{1}{\alpha+\beta}\downarrow\), \(\text{Var}(\pi)\rightarrow 0\), \(\text{Var}(Y)\rightarrow n\mu(1-\mu)\), and \(Y\rightarrow \text{Bin}(n,\mu)\) (\(\alpha+\beta\)가 커지면 커질수록 Binomial 분포로 수렴한다).