Let \[ L_j=\log\left\{ \frac{\pi_j(x)}{\pi_{j+1}(x)} \right\}=\text{logit}\{P(Y=j|Y=j \mbox{ or } Y={j+1})\}. \] These logits are a basic set equivalent to the Baseline category logit models.
Model: \[ L_j=\log\left\{ \frac{\pi_j(x)}{\pi_{j+1}(x)}\right\}=\alpha_j+\beta'x, \mbox{ }j=1,\ldots,J-1 \] assumes common effect for all logits.
Note that the baseline category logit model can also be used here such that \[\begin{eqnarray*} \log\left\{ \frac{\pi_j(x)}{\pi_{J}(x)}\right\}= L_j+L_{j+1}+\cdots+L_{J-1}=\sum_{h=j}^{J-1}\alpha_h+(J-j)\beta'x= \alpha_j^*+\beta'u_j. \end{eqnarray*}\]
Let \(F_j(x)=P(Y\le j|x)\), \(j=1,2,\ldots,J-1\). Cumulative logits are \[ L_j(x)=\log\left\{ \frac{F_j(x)}{1-F_j(x)} \right\}, \mbox{ }\mbox{ }j=1,\ldots,J-1. \]
Model: \[ L_j(x)=\log\left\{ \frac{F_j(x)}{1-F_j(x)} \right\}=\alpha_j+\beta'x. \]
Let \(Y=\)observed responses, \(Y^*=\)underlying continuous response.
Suppose that there are “cutpoints” \(\{\alpha_j\}\) such that \(Y=j\) if \(\alpha_{j-1}<Y^*\le \alpha_j\).
Let \(F_j(x)=P(Y\le j|x)= P(Y^*\le \alpha_j |x)\).
Suppose \(Y^*=\beta'x+\epsilon\) has cdf \(G(y^*-\beta'x)\), where \(\beta'x\) is a location parameter. Then, \[ P(Y^*\le \alpha_j |x)=G(\alpha_j-\beta'x)\\ \iff G^{-1}\{ P(Y\le j |x)\}=\alpha_j-\beta'x. \] If \(\epsilon\sim\)normal dist., \(G^{-1}=\)probit;
If \(\epsilon\sim\)logistic, \(G^{-1}=\)logit(cumulative logit model).
\(Y^*\) modeling: \(Y^*=\beta'x+\epsilon\)이라고 처음 모델을 세운다.
Cutpoint가정: 만약 \(\alpha_{j-1}<Y^*\le \alpha_j\)라면 \(Y=j\iff Y^*\le \alpha_j\)라면 \(Y\le j\)이다.
\(\epsilon\)의 cdf 분포 가정: \(Y^*=\beta'x+\epsilon\) has cdf \(G(y^*-\beta'x)\iff\) \(Y^*\) has cdf \(G(\epsilon)\), \(\eta\)는 location. 자세히 보이면 \[ P(Y^* \le \alpha_j |x) = P(\beta'x+\epsilon \le \alpha_j |x)=P(\epsilon \le \alpha_j-\beta'x |x) =G_\epsilon(\alpha_j-\beta'x)\\ \implies G^{-1}\{ P(Y\le j |x)\}=\alpha_j-\beta'x. \] 즉 \(\epsilon\)의 분포에 따라 모델이 바뀐다.
For multinomial counts, \(\{y_{ij};j=1,\ldots,J\}\) at setting \(x_i\) assumed independent at different \(x_i\), the likelihood has form
\[\begin{eqnarray*} \prod_{i}\left[ \prod_{j=1}^j\{ P(Y_{ij}=j|x_i )^{y_{ij}} \} \right]&=&\prod_{i}\left[ \prod_{j=1}^j\left\{ P(Y_{ij}\le j|x_i)-P(Y_{ij}\le j-1|x_i) \right\}^{y_{ij}} \right] \\ &=&\prod_{i}\left[ \prod_{j=1}^j\{F_j(x_i)-F_{j-1}(x_i)\}^{y_{ij}} \right] \end{eqnarray*}\] with \[ F_j(x_i)=\frac{\exp(\alpha_j-\beta'x_i)}{1+\exp(\alpha_j-\beta'x_i)}, \] \(F_J(x_i)=1\), and \(F_0(x_i)=0\) (\(j=1,\ldots,J\)이기 때문에, \(P(Y\le J)=1\)이고 \(P(Y\le 0)=P(Y< 1)=0\)이다).
\(\implies \hat\pi_j(x_i)\)를 이용하여 likelihood를 구하고, \(\tilde\pi_j(x_i)=y_{ij}\)로 saturated model과의 log값의 차이를 통해 Deviance를 구한다.)
*\(P(Y\le j)= \frac{\exp(\alpha_j-\beta'x)}{1+\exp(\alpha_j-\beta'x)}\)에서 For \(k>j\), \(P(Y\le k)\) is shifted to left by \(\frac{\alpha_j-\alpha_k}{\beta}\) such that \[ F_k(x)=F_j\left( x+\frac{\alpha_j-\alpha_k}{\beta} \right) \]
\(G= \Phi\)(c.d.f of the standard normal distribution) gives cumulative probit model.
\(G^{-1}(u)=\log\{-\log(1-u)\}\) is complementary \(\log-\log\) link corresponds to \(G=\)extreme value cdf.
Model: \[ \log\{-\log (1-P(Y\le j)) \}=\alpha_j-\beta'x\\ \implies P(Y\le j|x_1)=\{ P(Y>j|x_2)\}^{\exp\{\beta'(x_1-x_2) \}}. \]