Let \(X_1,X_2,X_3,\ldots,\) be iid random variables from some unknown probability distribution with mean 0 and finite variance \(\sigma^2\). Suppose we know that \[ \frac{X_1+X_2+\cdots+X_n}{\sqrt{n}}\stackrel{d}\rightarrow Y,\mbox{ }Y\sim F. \] Then, \(Y\sim \mathcal{N}(0,\sigma^2)\).
Proof: Note that \(\frac{X_1+X_2+\cdots+X_{2n}}{\sqrt{2n}}\stackrel{d}\rightarrow Y\), i.e., \[\frac{1}{\sqrt{2}}\biggl\{\frac{X_1+X_2+\cdots+X_{n}}{\sqrt{n}}+\frac{X_{n+1}+X_{n+2}+\cdots+X_{2n}}{\sqrt{n}}\biggr\}\stackrel{d}\rightarrow Y.\] Since the two terms on the LHS are independent and identically distributed, we also know that \[\frac{1}{\sqrt{2}}\biggl\{\frac{X_1+X_2+\cdots+X_{n}}{\sqrt{n}}+\frac{X_{n+1}+X_{n+2}+\cdots+X_{2n}}{\sqrt{n}}\biggr\}\stackrel{d}\rightarrow \frac{1}{\sqrt{2}}Y_1+ \frac{1}{\sqrt{2}}Y_2.\mbox{ }\mbox{ where } Y_1,Y_2 \stackrel{\text{iid}}\sim F.\] Because of the uniqueness of the characteristic function with respect to the distribution \(F\), we know that \(\frac{1}{\sqrt{2}}Y_1+ \frac{1}{\sqrt{2}}Y_2\stackrel{d}= Y\) \(\mbox{ }\mbox{ where } Y_1,Y_2,Y\stackrel{\text{iid}}\sim F.\)
Let \(\varphi_X(t)\) denote the characteristic function of a random variable \(X\) with some \(t\). Note that \[ \varphi_{(Y_1+Y_2)/\sqrt{2}}(t)= \varphi_{Y}(t) =\varphi_F(t) \] where \(\varphi_F(t)\) means the characteristic fucntion of any random variable with the distribution \(F\). It means \[ E\biggl[\exp\biggl(i\frac{t}{\sqrt{2}}(Y_1+Y_2)\biggr)\biggr]=\varphi_F(t)\\ \implies E\biggl[\exp\biggl(i\frac{t}{\sqrt{2}}Y_1+i\frac{t}{\sqrt{2}}Y_2\biggr)\biggr]=\varphi_F(t)\\ \implies \varphi_F\biggl(\frac{t}{\sqrt{2}}\biggr)^2=\varphi_F(t).\\ \] Note that \(\varphi_F\biggl(t/\sqrt{2}\biggr)=\varphi_F\biggl(\frac{t}{\sqrt{2}}/\sqrt{2}\biggr)^2\).
Then, \[\begin{align*} E\biggl[\exp\biggl(i\frac{t}{\sqrt{2}}(Y_1+Y_2)\biggr)\biggr]&= \biggl\{\varphi_F\biggl(\frac{t}{\sqrt{2}}/\sqrt{2}\biggr)^2\biggr\}^2\\ &= \biggl\{\varphi_F\biggl(\frac{t}{2}\biggr)\biggr\}^4\\ &= \biggl\{\varphi_F\biggl(\frac{t}{4}\biggr)\biggr\}^{4\cdot 4} \mbox{ }\mbox{ }\mbox{ (with the same logic as above)}\\ \cdots &= \biggl\{\varphi_F\biggl(\frac{t}{2^n}\biggr)\biggr\}^{4^n}. \end{align*}\]
Note that \(\varphi_F(t)=\varphi_F\Bigl(\frac{t}{\sqrt{2}}\Bigr)^2\). By taking derivative w.r.t \(t\), we have \[ \varphi'_F(t)=\frac{1}{\sqrt{2}}\varphi_F\Bigl(\frac{t}{\sqrt{2}}\Bigr)\varphi'_F\Bigl(\frac{t}{\sqrt{2}}\Bigr) \] Thus, \(\varphi'_F(0)=\frac{1}{\sqrt{2}}\varphi_F(0)\varphi'_F(0)=\frac{1}{\sqrt{2}}\cdot 1\cdot \varphi'_F(0)\) \(\mbox{ }\) because \(\varphi_F(0)=1\). In other words, \(\varphi'_F(0)=0\).
Now, we expand \(\bigl\{\varphi_F\bigl(\frac{t}{2^n}\bigr)\bigr\}^{4^n}\)
as below: \[\begin{align*}
\biggl\{\varphi_F\biggl(\frac{t}{2^n}\biggr)\biggr\}^{4^n}&=\biggl\{1+iE(Y)\frac{t}{2^n}+\frac{i^2}{2}E(Y^2)\frac{t^2}{4^n}+R\biggl(\frac{t}{2^n}\biggr) \biggr\}^{4^n}\\
&=\biggl\{1+0+\frac{-1}{2}\cdot
\sigma^2\cdot\biggl(\frac{t}{2^n}\biggr)^2 +R\biggl(\frac{t}{2^n}\biggr)
\biggr\}^{4^n}\\
&= \biggl\{1-\frac{\sigma^2 t^2}{2\cdot 4^{n}}
+R\biggl(\frac{t}{2^n}\biggr) \biggr\}^{4^n}\\
&= \biggl\{1-\frac{\sigma^2
t^2}{2}\biggl(1-\frac{R(t/2^n)/\sigma^2}{(t/2^n)^2}\biggr) /4^n
\biggr\}^{4^n}
\end{align*}\]
Let \(A_n= \frac{\sigma^2
t^2}{2}\Bigl(1-\frac{R(t/2^n)/\sigma^2}{(t/2^n)^2}\Bigr)\). Then,
\(A_n\rightarrow \frac{\sigma^2
t^2}{2}\) as \(n\rightarrow\infty\) by the Truncated
Taylor Expansion theorem of Characteristic Functions. Conclusively, as
\(n\rightarrow\infty\) \[
\varphi_F(t)=\biggl\{\varphi_F\biggl(\frac{t}{2^n}\biggr)\biggr\}^{4^n}\rightarrow
\exp\Bigl(-\frac{\sigma^2t^2}{2}\Bigr)
\] which is the characteristic function of the normal
distribution with mean 0 and variance \(\sigma^2\) (QED).
Suppose that we have an array of random variable such that \[\begin{align*} &X_{1,1},\ldots,X_{1,m_1}\\ &X_{2,1},X_{2,2},\ldots,X_{1,m_2}\\ &\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\vdots\\ &X_{n,1},X_{n,2},X_{n,3},\ldots,X_{n,m_n}. \end{align*}\] Suppose that
Then, \(\sum_{j=1}^{m_n}X_{nj}\stackrel{d}{\rightarrow} N(0,1)\) as \(n\rightarrow \infty\)
Classical CLT는 \(m_1=1,m_2=2,\ldots,m_n=n\) 일 때의 Lindeberg-Feller CLT의 special case이다 (HW으로 보일 것).
Lindeberg’s Condition의 의미: Note that \[\begin{align*} & X_{nj}^2=X_{nj}^2I_{\{|X_{nj}|\le\epsilon\}}+ X_{nj}^2I_{\{|X_{nj}|>\epsilon\}}\le \epsilon^2+ X_{nj}^2I_{\{|X_{nj}|>\epsilon\}}\\ &\implies E(X_{nj}^2)\le \epsilon^2+ E(X_{nj}^2I_{\{|X_{nj}|>\epsilon\}})\\ & \implies \max_{1\le j\le m_n} E(X_{nj}^2) \le \epsilon^2+ \max_{1\le j\le m_n}E(X_{nj}^2I_{\{|X_{nj}|>\epsilon\}})\\ & \implies \max_{1\le j\le m_n} E(X_{nj}^2) \le \epsilon^2+ \max_{1\le j\le m_n}E(X_{nj}^2I_{\{|X_{nj}|>\epsilon\}})\\ & \implies \max_{1\le j\le m_n} E(X_{nj}^2) \le \epsilon^2+ \sum_{j=1}^{m_n}E(X_{nj}^2I_{\{|X_{nj}|>\epsilon\}}). \end{align*}\] If Lindeberg’s Condition holds, \[\begin{equation*} \lim_{n\rightarrow \infty}\max_{1\le j\le m_n} E(X_{nj}^2) \le \epsilon^2+ \lim_{n\rightarrow \infty}\sum_{j=1}^{m_n}E(X_{nj}^2I_{\{|X_{nj}>\epsilon\}})= \epsilon^2. \end{equation*}\] Therefore, if Lindeberg’s condition holds, then the contribution of variance of one random variable should be negligible (we will call this uniformity from now on).
Suppose that we have an array of random variable such that \[\begin{align*} &X_{1,1},\ldots,X_{1,m_1}\\ &X_{2,1},X_{2,2},\ldots,X_{1,m_2}\\ &\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\vdots\\ &X_{n,1},X_{n,2},X_{n,3},\ldots,X_{n,m_n}. \end{align*}\] Suppose that
Then, \(\sum_{j=1}^{m_n}X_{nj}\stackrel{d}{\rightarrow} N(0,1)\) as \(n\rightarrow \infty\)