Let \(W\) be a subspace of \(V\). The orthogonal complement of \(W\) is \[ W^\perp:=\{ v \in V: v\perp w \mbox{ for all } w \in W\} \]
Let \(W\) be a subspace of \(V\) and let \(W^\perp\) be its orthogonal complement. Then
Every \(x\in V\) can be written uniquely as \(x=x_0+x_1\), with \(x_0\in W\) and \(x_1\in W^\perp\).
\(\text{dim}(V)\)=\(\text{dim}(W)\)+\(\text{dim}(W^\perp)\).
Let \(A\) be an \(n\times n\) matrix. Then, \(\text{dim}(C(A))+\text{dim}(N(A))=n.\)
Let \(A\) be an \(n\times n\) matrix. The scalar \(\lambda\) os called an eigenvalue of \(A\) if \(A-\lambda I\) is singular, i.e., there exists a vector \(v\ne 0\) such that \(Av=\lambda v\).
Any such vector is called an eigenvector corresponding to \(\lambda\).
Consider a general inner product on \(\mathbb{R}^n\). For any operator or matrix \(A\) mapping \(\mathbb{R}^n\) to \(\mathbb{R}^n\), there exists another operator or matrix \(A^*\), called the adjoint, that satisfies \[ (Ax,y)=(x,A^*y) \hspace{3mm} \mbox{ for all } x,y\in \mathbb{R}^n. \]
An operator \(A\) is self-adjoint if it is equal to its adjoint, i.e., \(A=A^*\implies (Ax,y)=(x,Ay)\).
If \(\lambda_1\), \(\lambda_2\) are distinct eigenvalues of the symmetric matrix \(A\), and \(v_1\), and \(v_2\) are corresponding eigenvectors, then \(v_1 \perp v_2\).
The orthogonality implies that they are linearly independent.
If \(A\) is symmetric, then \(C(A)\) and \(N(A)\) are orthogonal complement.
우선 \(C(A)\)와 \(N(A')\)는 orthogonal하다: \(x\in N(A')\)인 \(x\)가 존재한다고 하자. (\(A'x=0\)). 또한 \(a_1,a_2,\ldots,a_n\) 을 A 의 column vectors라고 하자. 그렇다면 \(a_i \perp x\) for all \(i=1,2,\ldots,n\)이다. 때문에 \(x\perp c(A)\) 이다.
\(A\)는 symmetric하기 때문에 \(C(A)\)와 \(N(A)\)는 orthogonal하다. 또한 dim\((C(A))\)+dim\((N(A))\)=n하다. \(\implies\) Orthogonal complements (두 vector space는 perpendicular하고 dimension의 합이 n이다.)
매우 중요
Let \(A\) be a symmetric \(n\times n\) amtrix. Then, we can write \[ A=PDP', \] where \(D=\text{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n)\), and P is orthogonal.
The \(\lambda's\) are eigenvalues of \(A\), and the \(i^{th}\) column of \(P\) is an eigenvector corresponding to \(\lambda_i\).
모든 symmetric한 matrix는 eigenvalues로 이루어진 diagonal matrix와 eigenvectors로 이루어진 matrix로 분리할 수 있다.
Singular한 matrix또한 Spectral decomposition이 가능하다. 이 때, eigenvector로 이루어진 matrix는 orthogonal하지만 eigenvalue로 이루어진 diagonal matrix는 singular한 \(i^{th}\) element에 대해 \(0\)의 값을 갖는다.