Definition

Let \(A\) be symmetric matrix. Then, \(A\) is positive definite if for all \(v\ne 0\), \(v'Av>0\).

Also, \(A\) is non-negative definite if for all \(v\ne 0\), \(v'Av\ge 0\).

   

Remark
  1. \(A\) is positive definite \(\iff \lambda_i>0\) for all \(i\).

  2. \(A\) is non-negative definite \(\iff \lambda_i\ge 0\) for all \(i\).

    • Definition에서 vector \(v\)에 unit vector를 대입하면 증명할 수 있다.
  3. \(tr(A)=\sum_{i=1}^N \lambda_i\)

    • Trace의 성질 \(tr(ABC)=tr(BCA)=tr(CAB)\)를 이용하면 증명할 수 있다.

   

Lemma

Let \(W\) be a subspace on \(\mathbb{R}\), and let \(W^\perp\) be its orthogonal complement.

For any \(x\in \mathbb{R}^n\), we have the unique decomposition \[ x=x_1+x_2, \hspace{3mm} \mbox{ where } x_1\in W, x_2\in W. \] An orthogonal projection onto \(W\) is the map \(Px=x_1\).

   

중요

Definition

Let \(W\) be a subspace. The linear transformation \(P\) is an orthogonal projection onto \(W\) if

  1. for all \(x\in W\), \(Px=x\);

  2. for all \(x\in W^\perp\), \(Px=0\).

    • Preserves \(W\), kills \(W^\perp\) 로 이해하면 편하다.

   

Proposition

Suppose \(W\) is a subspace, and let \(P\) be an orthogonal projection onto \(W\).

  1. Let \(v=v_1+v_2\), where \(v_1\in W\), \(v_2\in W^\perp\) (unique decomposition). Then \(Pv=v_1\).

    • 즉, 이는 Orthogonal projection(onto \(W\))는 항상 unique함을 보여준다.

     

  2. \(I-P\) is the orthogonal projection onto \(W^\perp\).

    • \(I-P\) preserves \(W^\perp\), kills \((W^\perp)^\perp\) 를 보이면 증명할 수 있다.

 

  1. For all \(x\in \mathbb{R}\), \(Px\) is the unique closest point in \(W\) to \(x\). That is \[ ||x-y|| \ge ||x-Px|| \hspace{3mm} \mbox{ for all } y\in W, \]

    with equalify if and only if \(y=Px\).

    • P가 orthogonal projection onto \(W\)일때, \(W\) 공간 안에서 \(Px\)\(x\)와 가장 가깝다. (직교거리이다.)

  

매우 중요하다.

Proposition

\(P\) is an orthogonal projection onto some subspace \(\iff\) \(P^2=P\) and \(P\) is symmetric.

  

Theorem

Let \(A\) be a symmetric matrix. There exists a generalized inverse \(A^\dagger\) satisfying

  1. \(A A^\dagger A=A\);

  2. \(A^\dagger\) is symmetric;

  3. \(A^\dagger A A^\dagger=A^\dagger\).

  

Theorem

Let \(X\) be an arbitrary matrix. Let \(X^-=(X'X)^-X\) where \((X'X)^-\) is any generalized inverse of \(X'X\).

Then, \(X^-\) is a generalized inverse of \(X\).