Definition

If \(Y_{n\times 1}\) is a random vector, then

  1. \((E(Y))_{n\times 1}=\mu_{n\times 1}\) means \(E(Y_i)=\mu_i\) for all \(i\).

  2. \(Var(Y)\) is the \(n\times n\) matrix whose \(ij\)-th element is \(\text{Cov}(Y_i,Y_j)\).

  

매우 중요

Theorem

If \(E(Y_{n\times 1})=\mu, Var(Y)=V\), then \[E(Y'AY)=\text{tr}(AV)+\mu'A\mu\].

  

Remark

Let \(X_{n-1}\sim (\mu, \Sigma)\). Then,

  1. \(\Sigma\) is nonnegative definite;

  2. If \(\Sigma\) is not positive definite, then \(X\) lies in some hyperplane with probability one, i.e., there exist \(b, c\) s.t \(P(b'X=c)=1\).

  

Definition

If \(X\) is a (one-dimensional) random variable, and there exists \(\epsilon>0\) such that \(E(\exp(tX))<\infty\) for all \(t\in (-\epsilon,\epsilon)\), then moment generation function of X is defined as \[M_X(t)=E(\exp(tX)) \mbox{ }\mbox{ for all }t.\]

  

Example
  1. Let \(Z_1,\ldots Z_p\stackrel{\text{iid}}{\sim}N(0,1)\), and let \(Z= (Z_1,\ldots Z_p)\) (we can define \(Z\sim N(0,I)\)). \[M_Z(t)=E(\exp(t'Z))= E(\exp(t_1Z_1))\cdots E(\exp(t_pZ_p))= \prod_{i=1}^p\exp\left(\frac{1}{2}t_i^2\right)= \exp\left(\frac{1}{2}\sum_{i=1}^p t_i^2\right)=\exp\left(\frac{1}{2}t't\right).\]

 

  1. If \(Z\sim N_p(0,I)\), and \(\Gamma\) is an orthogonal matrix, then \(\Gamma Z\sim N_p(0,I)\). \[M_{\Gamma Z} (t)= E(\exp(t'\Gamma Z))= M_{Z} (\Gamma' t)= \exp\left( \frac{1}{2} t'\Gamma\Gamma' t\right)= \exp\left( \frac{1}{2} t't\right).\]

 

  1. Let \(X_{q\times 1}= A_{q\times p}Z_{p\times 1}+\mu\) \((Z\sim N_p(0,I))\). Then, \[\begin{eqnarray*} M_X(t)&=&E(\exp(t'X))=E(\exp(t'(AZ+\mu)))= E(\exp(t'AZ)))\exp(t'\mu)\\ &=& M_Z(A't)\exp(t'\mu)\\ &=&\exp(t'\mu)\exp\left(\frac{1}{2}t'AA't'\right).\end{eqnarray*}\]