If \(Y_{n\times 1}\) is a random vector, then
\((E(Y))_{n\times 1}=\mu_{n\times 1}\) means \(E(Y_i)=\mu_i\) for all \(i\).
\(Var(Y)\) is the \(n\times n\) matrix whose \(ij\)-th element is \(\text{Cov}(Y_i,Y_j)\).
매우 중요
If \(E(Y_{n\times 1})=\mu, Var(Y)=V\), then \[E(Y'AY)=\text{tr}(AV)+\mu'A\mu\].
\(E(Y'AY) = E(\text{tr}(Y'AY))= E(\text{tr}(AYY'))= \text{tr}(E(AYY'))=\text{tr}(A\cdot E(YY'))= \text{tr}(AV+ A\mu \mu')= \text{tr}(AV)+\mu'A\mu.\)
Example: \(Y_i\stackrel{\text{ind}}{\sim}N(\mu_i, \sigma^2),\) \(i=1,2,\ldots,n\). \(\implies E(\sum_{i=1}^n (Y_i-\bar{Y})^2)=E(Y'(I-\frac{1}{n}J)Y)=\sigma^2\text{tr}(I-\frac{1}{n}J)+\mu'(I-\frac{1}{n}J)\mu= (n-1)\sigma^2+ \sum_{i=1}^n(\mu_i-\bar{\mu})^2.\)
Let \(X_{n-1}\sim (\mu, \Sigma)\). Then,
\(\Sigma\) is nonnegative definite;
If \(\Sigma\) is not positive definite, then \(X\) lies in some hyperplane with probability one, i.e., there exist \(b, c\) s.t \(P(b'X=c)=1\).
\(\Sigma\) 가 양정치행렬이 아니라고 하자. 그렇다면 양정치행렬의 정의에 의해 \(b'\Sigma b=0\)을 만족하는 \(b\ne 0\)이 존재한다.
\(\iff\) \(b'\Sigma b=Var(b'X)=0\) (즉, \(b'X\)는 constant 이다. ) \(\iff\) \(P(b'X=c)=1\).
If \(X\) is a (one-dimensional) random variable, and there exists \(\epsilon>0\) such that \(E(\exp(tX))<\infty\) for all \(t\in (-\epsilon,\epsilon)\), then moment generation function of X is defined as \[M_X(t)=E(\exp(tX)) \mbox{ }\mbox{ for all }t.\]