Theorem

Suppose \(Y \sim N_n(\mu, V)\).

  1. If \(A_1,A_2, \ldots, A_k\) are \(n\times n\) symmetric matrices satisfying \(A_i V A_j=0\) for \(i \ne j\), then the quadratic forms \(Y'A_1Y,\ldots,Y'A_kY\) are independent.

  2. If \(A\) is symmetric \(n\times n\), \(B\) is \(m\times n\), and \(AVB'=0\). then \(Y'AY\) and \(BY\) are independent.

  

Definition

Let \(\delta>0\), and let \(\mu\in \mathbb{R}^p\) be such that \(\delta = \frac{1}{2}||\mu||^2\). Let \(Y\sim N_p(\mu,I)\).

The noncentral chisquare distribution with noncentrality parameter \(\delta\), denoted \(\chi^2_p(\delta)\), is the distribution of \(||Y||^2\).

  

위 Definition을 보충설명 해준다.

Little Lemma

If \(Y_1\sim N_p(\mu_1, I),\) \(Y_2\sim N_p(\mu_2, I)\), and \(\mu_1'\mu_1=\mu_2'\mu_2\), then \(Y_1'Y_1\stackrel{\text{dist}}{=}Y_2'Y_2\).

  

위 Definition을 보충설명 해준다.

Proposition

If \(Y\sim N_n(\mu, V)\) and \(V\) is invertible, then \(Y'V^{-1}Y\sim \chi^2_n(\frac{1}{2}\mu'V^{-1}\mu)\).

  

Theorem

If \(Y\sim N_n(\mu, I)\) and P is an orthogonal projection with \(\text{rank}(P)=k\le n\), then

\(Y'PY\sim \chi^2_k(\frac{1}{2}\mu'P\mu).\)

  

back