Remark

Model : \(Y\sim N(X\beta, \sigma^2I)\).

We are going to test \[ H_0: L\beta=0 \mbox{ }\mbox{ } \mbox{ vs. } H_1: L\beta\ne 0. \] where \(L\) is \(r\times p\), \(r\le p\).

 

Example
  1. Consider one-way ANOVA model: \[ Y_{ij}=\beta_i+\epsilon_{ij}, \mbox{ }\mbox{ } \mbox{ } j=1,2,\ldots,n_i, \mbox{ } i=1,\ldots,k. \] Test \(H_0:\beta_1=\beta_2\).
  1. Test equality of slopes in simple linear regression s.t. \[ Y_i=\beta_0+\beta_1x_i+e_i, \mbox{ }\mbox{ }\mbox{ } i=1,2,\ldots,n,\\ Y_i^*=\beta_0^*+\beta_1^*x_i^*+e_i^*, \mbox{ }\mbox{ }\mbox{ } i=1,2,\ldots,m, \] where the \(m+n\) \(\epsilon\)’s are independent.

    Test \(H_0:\beta_1=\beta_1^* \mbox{ } \mbox{ } \mbox{vs. }H_1:\beta_1\ne\beta_1^*\).

 

Remark

Model : \(Y\sim N(\mu, \sigma^2I)\), \(\mu\in V_{\text{full}}\). We are often interested in testing \[ H_0: \mu\in V_{\text{red}} \mbox{ }\mbox{ } \mbox{ vs. } H_1: \mu\notin V_{\text{red}} \] where \(V_{\text{red}}\) and \(V_{\text{full}}\) are subspaces satisfying \[ V_{\text{red}}\subset V_{\text{full}}\subset\mathbb{R}^n. \] Note that for \(\beta=\begin{pmatrix}\beta_{1 (p_1\times 1)}\\ --- \\\beta_{2 (p_2\times 1)}\end{pmatrix},\) \[\begin{eqnarray*} V_{\text{full}}&=&\{ \mu \in \mathbb{R}^n: \mu=X\beta \mbox{ for } \beta\in \mathbb{R}^p \}= \text{range}(X),\\ V_{\text{red}}&=&\{ \mu \in \mathbb{R}^n: \mu=X\beta \mbox{ for } \beta \mbox{ with }\beta_2=0\}\\ &=&\{ \mu \in \mathbb{R}^n: \mu=X_1\beta_1 \mbox{ for some } \beta_1\in \mathbb{R}^{p_1}\}= \text{range}(X_1). \end{eqnarray*}\]

 

Theorem

Let \(V_r\), \(V_f\) be two subspaces with \(V_r \subset V_f\). Let \(P_r\), \(P_f\) be the orthogonal projection onto \(V_r\) and \(V_f\), respectively. Then, \[ I=P_r+ (P_f-P_r)+(I-P_f) \] gives an orthogonal decomposition.

 

Remark

We wish to test \[ H_0: \mu \in V_r \mbox{ }\mbox{ }\mbox{ vs. } \mbox{ }\mbox{ }H_0: \mu \notin V_r. \]

Note that \[\begin{eqnarray*} &&Y=P_rY+(P_f-P_r)Y+(I-P_f)Y\\ &&\implies ||Y||^2=||P_rY||^2+||(P_f-P_r)Y||^2+||(I-P_f)Y||^2 \mbox{ (orthogonal decomposition)}\\ &&\implies \frac{||Y||^2}{\sigma^2}=\frac{||P_rY||^2}{\sigma^2}+\frac{||(P_f-P_r)Y||^2}{\sigma^2}+\frac{||(I-P_f)Y||^2}{\sigma^2}. \end{eqnarray*}\]

 

Note that the terms on the right are independent.

 

Also note that

  1. \(\frac{||P_rY||^2}{\sigma^2}\sim \chi^2_{\nu_r}(\frac{1}{2\sigma^2}\mu'P_r\mu)\)

  2. \(\frac{||(P_f-P_r)Y||^2}{\sigma^2}\sim \chi^2_{\nu_f-\nu_r}(\frac{1}{2\sigma^2}\mu'(P_f-P_r)\mu)\)

  3. \(\frac{||(I-P_f)Y||^2}{\sigma^2}\sim \chi^2_{n-\nu_f}(\frac{1}{2\sigma^2}\mu'(I-P_f)\mu)\)

 

back