Definition (Identification)

\(\theta_0\) is identified if \(\theta\ne \theta_0\) and \(\theta\in \Theta\) implies \(f(z;\theta)\ne f(z;\theta_0)\).




MLE 예제

Lemma (Information Inequality)

If \(\theta_0\) is identified and \(E(|\log f(z;\theta)|)<\infty\) for all \(\theta\), then \(Q_0(\theta):=E(\log f(Z;\theta))\) has a unique maximum at \(\theta_0\).




GMM (Generalized Method of Moments) 예제

Lemma (GMM Identification)

Suppose that there is a moment function vector \(g(z,\theta)\) such that \(E(g(Z,\theta_0))=0\) for some \(\theta_0\). Let \(W\) be positive semi definite, and \(\hat W \stackrel{P}\rightarrow W\). Note that by the law of large numbers, we know for independent random variables \(z_1,\ldots,z_n\), \(n^{-1}\sum_{i=1}^n g(z_i,\theta) \stackrel{P}\rightarrow g_0(\theta)\), where \(g_0(\theta) =E(g(Z,\theta))\). Assume that \(g_0(\theta_0)=E(g(Z;\theta_0))=0\). Now, let \[ \hat Q_n(\theta) = - (n^{-1}\sum_{i=1}^n g(z_i,\theta))' \hat W (n^{-1}\sum_{i=1}^n g(z_i,\theta)). \] If \(W g_0(\theta)\ne 0\) for \(\theta\ne \theta_0\), then \(Q_0(\theta)=-g_0(\theta)'Wg_0(\theta)\) has a unique maximum at \(\theta_0\).




Lemma (CMD identification)

Let \(W\) be positive semi definite. Let \(\hat W \stackrel{P}\rightarrow W\), and \(\hat\pi \stackrel{P}\rightarrow \pi_0:=h(\theta_0)\), and \[ \hat Q_n(\theta) = - (\hat\pi-h(\theta))' \hat W (\hat\pi-h(\theta)). \] If \(W (h(\theta)-h(\theta_0))\ne 0\) for \(\theta\ne \theta_0\), then \(Q_0(\theta)= - (\pi_0-h(\theta))' W (\pi_0-h(\theta))\) has a unique maximum (of 0) at \(\theta_0\).




back