\(\theta_0\) is identified if \(\theta\ne \theta_0\) and \(\theta\in \Theta\) implies \(f(z;\theta)\ne f(z;\theta_0)\).
MLE 예제
If \(\theta_0\) is identified and \(E(|\log f(z;\theta)|)<\infty\) for all \(\theta\), then \(Q_0(\theta):=E(\log f(Z;\theta))\) has a unique maximum at \(\theta_0\).
GMM (Generalized Method of Moments) 예제
Suppose that there is a moment function vector \(g(z,\theta)\) such that \(E(g(Z,\theta_0))=0\) for some \(\theta_0\). Let \(W\) be positive semi definite, and \(\hat W \stackrel{P}\rightarrow W\). Note that by the law of large numbers, we know for independent random variables \(z_1,\ldots,z_n\), \(n^{-1}\sum_{i=1}^n g(z_i,\theta) \stackrel{P}\rightarrow g_0(\theta)\), where \(g_0(\theta) =E(g(Z,\theta))\). Assume that \(g_0(\theta_0)=E(g(Z;\theta_0))=0\). Now, let \[ \hat Q_n(\theta) = - (n^{-1}\sum_{i=1}^n g(z_i,\theta))' \hat W (n^{-1}\sum_{i=1}^n g(z_i,\theta)). \] If \(W g_0(\theta)\ne 0\) for \(\theta\ne \theta_0\), then \(Q_0(\theta)=-g_0(\theta)'Wg_0(\theta)\) has a unique maximum at \(\theta_0\).
We have \(\hat Q_n(\theta)\stackrel{P}\rightarrow Q_0(\theta)=-g_0(\theta)'Wg_0(\theta)\) by continuity of multiplication (a.k.a continuous mapping theorem).
문제에서의 가정에 의해 \(g_0(\theta_0)=E(g(Z;\theta_0))=0\)이다. 때문에 \(Q_0(\theta_0)=-g_0(\theta_0)'Wg_0(\theta_0)=0\).
Let \(W=R'R\). If \(\theta\ne \theta_0\), then \(0\ne Wg_0(\theta)=R'R g_0(\theta)\) implies \(R g_0(\theta)\ne 0\). Hence, \(Q_0(\theta)=-(R g_0(\theta))'(R g_0(\theta))<Q_0(\theta_0)=0\) for all \(\theta\ne\theta_0\). Q.E.D.
Let \(W\) be positive semi definite. Let \(\hat W \stackrel{P}\rightarrow W\), and \(\hat\pi \stackrel{P}\rightarrow \pi_0:=h(\theta_0)\), and \[ \hat Q_n(\theta) = - (\hat\pi-h(\theta))' \hat W (\hat\pi-h(\theta)). \] If \(W (h(\theta)-h(\theta_0))\ne 0\) for \(\theta\ne \theta_0\), then \(Q_0(\theta)= - (\pi_0-h(\theta))' W (\pi_0-h(\theta))\) has a unique maximum (of 0) at \(\theta_0\).
We have \(\hat Q_n(\theta)\stackrel{P}\rightarrow Q_0(\theta)= - (\pi_0-h(\theta))' W (\pi_0-h(\theta))\) by continuity of multiplication, and \(Q_0(\theta_0)=0\) by the definition \(\pi_0:=h(\theta_0)\)
나머지는 GMM에서의 증명과 같으므로 생략.
즉 \(h(\theta)-h(\theta_0)\)가 nullspace of \(W\)에 있지 않다면, \(Q_0(\theta)\)는 \(\theta_0\)에서 unique maximum을 갖는다.
\(h(\theta)-h(\theta_0)\)가 \(W\)의 nullspace에 있다는 것은, matrix algebra를 생각했을 때 어떠한 vector들간의 dependency를 의미하고 이는 singularity를 의미한다. 즉 solving equation \(Wx=B\)를 생각했을 때, unique한 근이 아니라 여러개의 근 \(x\)가 나온다는 것으로 즉 identifiable하지 않다는 의미이다.