Theorem

Suppose that \(z_1\ldots,z_n\) are i.i.d random variables with p.d.f. \(f(z_i;\theta_0)\) and

  1. (identification) : if \(\theta\ne \theta_0\) then \(f(z_i;\theta)\ne f(z_i;\theta_0)\),
  2. (compactness) : \(\theta_0\in\Theta\), where \(\Theta\) is compact,
  3. (continuity) : \(\log f(z_i;\theta)\) is continuous at each \(\theta\in\Theta\) w.p.1,
  4. (uniform convergence) : \(E[\sup_{\theta\in\Theta}|\log f(Z;\theta)|]<\infty\).

Define \(\hat Q_n(\theta) =n^{-1}\sum_{i=1}^n \log f(z_i;\theta)\), and let \(\hat\theta = \arg\max_{\theta\in\Theta}\hat Q_n(\theta)\) (definition of MLE).

Then, \(\hat\theta\stackrel{P}\rightarrow \theta_0\).




back