A class \(\mathcal{F}\) of subsets of \(\Omega\) is a over \(\Omega\) if
Note that 1 could be replaced by
and 3 replaced by
A class \(\mathcal{F}\) of subsets of \(\Omega\) is a if
If \(\mathcal{F}\) is \(\sigma\)-field, then it is a field. But, the reverse does not hold.
If \(\mathcal{F}\) is a field and \(\mathcal{F}\) is closed under countable disjoint unions, then \(\mathcal{F}\) is a \(\sigma\)-field.
(You can construct disjoint sets \(B_n, n\ge 1\) which is increasing sequence of sets, \(\cup_n A_n = \uplus_n B_n\). Because \(\mathcal{F}\) is closed under countable disjoint union, \(\cup_n A_n = \uplus_n B_n \in \mathcal{F}\).)
\(\sigma(\mathcal{C})\) is the smallest \(\sigma\)-field containing \(\mathcal{C}\).
Note that
If \(\mathcal{F}\) is a \(\sigma\)-field, then \(\sigma(\mathcal{F})= \mathcal{F}\).
If \(\mathcal{C} \subset \mathcal{D}\), then \(\sigma(\mathcal{C})\subset \sigma(\mathcal{D})\).
If \(\mathcal{C} \subset \mathcal{D} \subset \sigma (\mathcal{C})\), then \(\sigma(\mathcal{C})= \sigma(\mathcal{D})\).
The on \(\mathbb{R}=(-\infty, \infty)\), denoted by \(\mathcal{R}\) is defined to be the smallest \(\sigma\)-field on \(\mathbb{R}\) containing
e.g. \(\sigma(\mathcal{I}_0)= \mathcal{R}.\)
*실수에서의 Entire set \(\Omega\)는 \(\mathbb{R}\)이라고 생각하고 \(\Omega\)의 Subset들을 any interval in the real line \(\mathbb{R}\) 이라고 생각하자. 그렇다면 그 subset들의 class(1번부터 8번까지의 class 중 하나)의 the smallest \(\sigma\)-field를 우리는 Borel \(\sigma\)-field 라고 생각하자.