In this section, \((\Omega, \mathcal{F}, \mu)\) is taken to be a measure space. Also, unless otherwise stated, any simple function \(f=\sum_{i=1}^m a_i I_{A_i}\) is assumed to be \(\mathcal{F}\)-measurable and to be represented in such a way that \(A_i\in \mathcal{F}\) and \(A_i=\phi\) for all \(i=1,\ldots,m\), and \(\Omega=\uplus_{i=1}^m A_i\).

  

Lemma(Monotonicity for nonnegative simple functions)

If \(f=\sum_{i=1}^m a_iI_{A_i}\) and \(g=\sum_{j=1}^n b_jI_{B_j}\) are measurable, extended-real-valued simple functions satisfying \(0\le f(\omega) \le g(\omega)\) for all \(\omega\in \Omega\), then \[ \sum_{i=1}^m a_i\mu(A_i)\le\sum_{j=1}^n b_j\mu(B_j). \]

  

매우매우 중요

Definition(Integral)

Assume in this definition that \(f:\Omega\rightarrow\bar{\mathbb{R}}\) is measurable-\(\mathcal{F}/\mathcal{R}\).

If \(f=\sum_{i=1}^m a_iI_{A_i}\) is a nonnegative, real-valued simple function, then the integral of \(f\) (with respect to \(\mu\)) is defined to be \[ \int f \mbox{ }d\mu=\sum_{i=1}^m a_i\mu(A_i). \]

For general nonnegative \(f\), \[ \int f\mbox{ } d\mu=\sup\left\{ \int g\mbox{ }d\mu :0\le g\le f, \mbox{ } g \mbox{ simple, real-valued, and measurable.} \right\} \]

Finally, for general \(f\), we define \[ \int f\mbox{ } d\mu=\int f^+\mbox{ } d\mu-\int f^-\mbox{ } d\mu \] whenever the difference on the right-hand side is well-defined. In this case, we say that the integral exists, and otherwise that the integral fails to exist.

If both \(\int f^+\mbox{ } d\mu\) and \(\int f^-\mbox{ } d\mu\) are finite, so that \(\int f\mbox{ } d\mu\) exists and is finite, then we say that \(f\) is integrable w.r.t \(\mu\) \((\int |f|d\mu <\infty)\).

 

  

Theorem(Approximation of the integral Using Simple function)

If \(f\ge 0\) is measurable-\(\mathcal{F}/\mathcal{R}\) and \(f_n, n\ge 1\) is a sequence of real-valued simple functions satisfying \(0\le f_n \uparrow f\), then \[ 0\le \int f_n \mbox{ }d\mu \uparrow \int f\mbox{ }d\mu. \]

  

Definition

A property is said to hold almost everywhere(a.e.), or more specifically \(\mu\)-almost everywhere (\(\mu\)-a.e.), if the property holds for all \(\omega\) in some set \(A\in \mathcal{F}\) with \(\mu(A^c)=0\). If \(\mu\) is a probability measure, then we say that the property holds almost surely (a.s.) or with probability 1 (w.p.1).

  

Theorem

If \(f,g:\Omega\rightarrow \bar{\mathbb{R}}\) are measurable functions satisfying \(f=g\) a.e., then \(\int f\mbox{ }d\mu\) exists if and only if \(\int g\mbox{ }d\mu\) exists, and in this case \(\int f\mbox{ }d\mu= \int g\mbox{ }d\mu\). In particular, if \(f=0\) a.e., then \(\int f\mbox{ }d\mu= 0\).

  

Theorem(Monotonicity of the Integral for Nonnegative Functions)

Suppose that \(f,g:\Omega\rightarrow\bar{\mathbb{R}}\) are measurable-\(\mathcal{F}\). If \(0\le f\le g\) a.e., then \(\int f\mbox{ }d\mu \le \int g\mbox{ }d\mu\).

  

매우 중요

Theorem(Monotone Convergence Theorem)

Suppose that \(f\) and \(f_n,n\ge 1\) are \(\mathcal{F}\)-measurable, extended-real-valued functions on \(\Omega\).

If \(0\le f_n\uparrow f\) a.e., then \[ \int f_n \mbox{ }d\mu \uparrow \int f \mbox{ }d\mu. \]

  

Theorem(Basic properties of the Integral)

Suppose throughout that \(f,g:\Omega\rightarrow \bar{\mathbb{R}}\) are measurable-\(\mathcal{F}\).

  1. (Scalar multiplication and integration commute) If \(c\in \mathbb{R}\) and \(\int f\mbox{ }d\mu\) exists, then \(\int cf \mbox{ }d\mu=c\int f \mbox{ }d\mu\).

 

  1. (Additivity) If \(f+g\) is well-defined(not \(\infty-\infty\)) and \(\int f\mbox{ }d\mu\) and \(\int g\mbox{ }d\mu\) exist, then \[ \int (f+g)\mbox{ }d\mu= \int f\mbox{ }d\mu+ \int g\mbox{ }d\mu, \]

    as long as the expression on the right-hand side is defined. In particular, if \(f\) and \(g\) are integrable, then so is \(f+g\).

 

  1. (Linearity) Suppose that \(a,b\in \mathbb{R}\), that \(af+bg\) is well-defined, and that \(\int f\mbox{ }d\mu\) and \(\int g\mbox{ }d\mu\) exist. Then, \[ \int (af+bg)\mbox{ }d\mu= a\int f\mbox{ }d\mu+ b\int g\mbox{ }d\mu, \]

    as long as the expression on the right-hand side is defined. In particular, this holds whenever \(f\) and \(g\) are integrable.

 

  1. If \(f\ge 0\) and \(\mu(f>0)>0\), then \(\int f\mbox{ }d\mu>0\).

    • \(\mu(f>0)>0\)\(A:=\{w\in \Omega: f(\omega)>0\}\)가 공집합이 아니라는 의미이다.

    • \(A^c=\{w\in \Omega: f(\omega)=0\}\)이므로 \(\mu(A^c)=\int_{A^c} f\mbox{ }d\mu=\int fI_{A^c}\mbox{ }d\mu=0\)이다. 때문에 \(f>0\) a.e.이다.

    • if \(f=0\) a.e., then \(\int f\mbox{ }d\mu= 0\)의 역명제로 if \(f>0\) a.e., then \(\int f\mbox{ }d\mu>0\)을 유추할 수 있다(두가지 경우밖에 없기 때문).

 

  1. If \(\int f\mbox{ }d\mu<\infty\), then \(f<\infty\) a.e.

    • Integral 값이 \(\infty\)보다 작다면, \(f <\infty\) a.e. 이다.

 

  1. (Monotonicity) If \(f\le g\) a.e., and both \(\int f\mbox{ }d\mu\) and \(\int g\mbox{ }d\mu\) exist, then \(\int f\mbox{ }d\mu\le \int g\mbox{ }d\mu\).

    • Integral을 씌워도 부등호는 같다.

 

  1. If \(\int f\mbox{ }d\mu\) exists, then \(|\int f\mbox{ }d\mu|\le \int |f|\mbox{ }d\mu\).

    • \(-|f|\le f \le |f|\implies -\int|f|d\mu=\int-|f|d\mu\le \int f\mbox{ }d\mu \le \int|f|d\mu\implies|\int f\mbox{ }d\mu|\le \int |f|\mbox{ }d\mu\).

  

Theorem(Extended monotonicity)

Assume that \(f\le g\) a.e. If \(\int f\mbox{ }d\mu\) exists and \(\int f\mbox{ }d\mu>-\infty\), then \(\int g\mbox{ }d\mu\) exists.

Similarly, if \(\int g\mbox{ }d\mu\) exists and \(\int g\mbox{ }d\mu<\infty\), then \(\int f\mbox{ }d\mu\) exists. In either case, \(\int f\mbox{ }d\mu\le \int g\mbox{ }d\mu\).

  

back