이 챕터는 전부 다 매우 중요하다.

  

Theorem(Monotone Convergence Theorem)

If \(0 \le f_n \uparrow f\) a.e., then \(\int f_n d\mu \uparrow \int f\mbox{ }d\mu\).

  

매우 중요하다.

Corollary

If \(f_n \ge 0\) for all \(n\ge 1\), then \[ \int \sum_{n=1}^\infty f_n\mbox{ } d\mu = \sum_{n=1}^\infty\int f_n\mbox{ }d\mu. \]

  

Fatou’s Lemma를 위해

Theorem(Extended Monotone Convergence Theorem)

If \(g\le f_n\uparrow f\) a.e., where \(\int g\mbox{ }d\mu>-\infty\), then \(-\infty<\int f_n \mbox d\mu \uparrow \int f \mbox d\mu\).

  

역시 매우 중요

Theorem((Extended) Fatou’s Lemma)

If \(f_n\ge g\) a.e., where \(\int g\mbox{ }d\mu>-\infty\), then \[ \int \liminf_nf_nd\mu\le \liminf_n\int f_nd\mu. \]

  

매우 중요

Theorem(Lebesgue Dominated Convergence Theorem)

If \(|f_n|\le g\) a.e. for all \(n\ge 1\), where \(g\) is integrable, and if \(f_n\rightarrow f\) a.e., then \(f\) and the \(f_n\) are integrable and \(\int f_n\mbox{ }d\mu \rightarrow \int f\mbox{ }d\mu\).

  

D.C.T의 Variation

Corollary(Bounded Convergence Theorem)

Suppose that \(\mu\) is a finite measure. If \(f_n\rightarrow f\) a.e. and the \(f_n, n\ge 1\) are a.e. uniformly bounded(by some finite constant), then \(\int f_n\mbox{ }d\mu\rightarrow \int f\mbox{ }d\mu\).

  

Corollary

If \(\sum_{n=1}^\infty f_n\) converges a.e. and \(|\sum_{k=1}^n f_k|\le g\) a.e. for all \(n\ge 1\), where g is integrable, then both \(\sum_{n=1}^\infty f_n\) and the individual \(f_n\)s are integrable and \(\int\sum_{n=1}^\infty f_n \mbox{ }d\mu=\sum_{n=1}^\infty\int f_n\mbox{ }d\mu\).

  1. \(|h_n|\le g\) a.e. for all \(n\ge 1\);

  2. \(g\) is integrable;

  3. \(h_n\rightarrow h\)(\(h\) exists from the given assumption).

  

  

back