The integral of \(f\) over a set \(A\in \mathcal{F}\) is defined by \[ \int_A f \mbox{ }d\mu=\int fI_A \mbox{ }d\mu, \] whenever the latter integral exists. The definition applies even if \(f\) is defined only on \(A\) by taking, e.g., \(f(\omega)=0\) for \(\omega\notin A\).
If \(\int f\mbox{ }d\mu\) exists, then so does \(\int f_A\mbox{ }d\mu\) for any \(A\in \mathcal{F}\).
Let \(\nu(A)=\int_A f\mbox{ }d\mu\), \(A\in \mathcal{F}\). This is called indefinite integral of \(f\).
If \(\int f\mbox{ }d\mu\) exists and \(A_1,A_2,\ldots\in \mathcal{F}\) are disjoint, then
\[ \nu\left(\biguplus_{n=1}^\infty A_n\right)=\int_{\uplus_{n=1}^\infty A_n}f\mbox{ }d\mu= \sum_{n=1}^\infty\int_{A_n}f\mbox{ }d\mu=\sum_{n=1}^\infty \nu(A_n). \]
Note: Let \(A=\uplus_{n=1}^\infty A_n\). Then, \(I_A=I_{\uplus_{n=1}^\infty A_n}=\sum_{n=1}^\infty I_{A_n}\).
증명: Nonnegative한 \(f\)에 대해서는 Corollary of monotone convergence theorem에 의해 다음을 얻는다.
\[ \nu(A)= \int fI_A \mbox{ }d\mu= \int \sum_{i=1}^\infty fI_{A_i}d\mu\stackrel{\text{Corollary}}{=}\sum_{i=1}^\infty \int fI_{A_i}d\mu=\sum_{i=1}^\infty \nu(A_i). \]
\[ \nu(A)=\int_A f \mbox{ }d\mu=\int_A f^+ \mbox{ }d\mu- \int_A f^- \mbox{ }d\mu= \sum_{n=1}^\infty\int_{A_n}f^+\mbox{ }d\mu-\sum_{n=1}^\infty\int_{A_n}f^-\mbox{ }d\mu= \sum_{n=1}^\infty\left(\int_{A_n}f^+\mbox{ }d\mu-\int_{A_n}f^-\mbox{ }d\mu\right)=\sum_{n=1}^\infty \int_{A_n}f\mbox{ }d\mu=\sum_{n=1}^\infty\nu(A_n). \]
Suppose that the ingetrals of \(f\) and \(g\) exist and their indefinite integrals are equal, i.e., \[\begin{equation} \int_Af\mbox{ }d\mu=\int_Ag\mbox{ }d\mu\mbox{ }\mbox{ }\mbox{ }\mbox{ for all }A\in \mathcal{F}. \end{equation}\] Under fairly broad conditions this implies that \(f=g\) a.e., as the next theorem shows.
Suppose that \(\int f\mbox{ }d\mu\) and \(\int g\mbox{ }d\mu\) exist.
If \(\mu\) is \(\sigma\)-finite on \(\mathcal{F}\), and
\(\int_Af\mbox{ }d\mu=\int_Ag\mbox{ }d\mu\) for all \(A\in \mathcal{F}\), then \(f=g\) a.e.
If \(f\) and \(g\) are integrable, and
\(\int_Af\mbox{ }d\mu=\int_Ag\mbox{ }d\mu\) for all \(A\in \mathcal{F}\), then \(f=g\) a.e.
if \(f\) and \(g\) are integrable,
and \(\int_Af\mbox{ }d\mu=\int_Ag\mbox{ }d\mu\) for all \(A\in \mathcal{P}\), where \(\mathcal{P}\) is a \(\pi\)-system, \(\mathcal{F}=\sigma(\mathcal{P})\), and \(\Omega\) is a finite or countable union of \(\mathcal{P}\)-sets, then \(f=g\) a.e.
Suppose that \(\delta:\Omega\rightarrow \bar{\mathbb{R}}\) is nonnegative and \(\mathcal{F}\)-measurable, and let \[ \nu(A)=\int_A\delta\mbox{ } d\mu, \mbox{ }\mbox{ }\mbox{ }A\in \mathcal{F}. \] Then, \(\nu\) is a measure on \(\mathcal{F}\), and we say that \(\nu\) has density \(\delta\) with respect to \(\mu\).
\[ \nu\left(\uplus_{n=1}^\infty A_n\right)=\nu(A)= \int \delta I_A \mbox{ }d\mu= \int \sum_{i=1}^\infty \delta I_{A_i}d\mu\stackrel{\text{Corollary}}{=}\sum_{i=1}^\infty \int \delta I_{A_i}d\mu=\sum_{i=1}^\infty \nu(A_i). \]
중요하다
Suppose that \((\Omega, \mathcal{F}, \mu)\) is a measure space, \((\Omega', \mathcal{F}')\) is a measurable space.
Let \(T:\Omega\rightarrow \Omega'\) is measurable-\(\mathcal{F}/\mathcal{F}'\).
Let \(\mu_T=\mu\circ T^{-1}\) represent the induced measure on \((\Omega', \mathcal{F}')\), and let \(f:\Omega'\rightarrow \bar{\mathbb{R}}\) is measurable-\(\mathcal{F}'/\bar{\mathcal{R}}\).
Then, \[ \int_\Omega f(T(\omega))d\mu(\omega)=\int_{\Omega'}f(\omega')d\mu_T(\omega'), \] in the sense that if either integral exists then so deos the other and they are equal. More generally, for any \(A'\in \mathcal{F}'\),
\[ \int_{T^{-1}(A')} f(T(\omega))d\mu(\omega)=\int_{A'}f(\omega')d\mu_T(\omega'), \] in the same sense as above.
Suppose \(f\) is nonnegative simple function. Then, \[ 0\le f(\omega')=\sum_{i=1}^m a_i I_{A_i'}(\omega'),\mbox{ }\mbox{ } \omega'\in \Omega'. \]
Then, note that
\[ f(T(\omega))=\sum_{i=1}^m a_i I_{A_i'}(T(\omega))=\sum_{i=1}^m a_i I(T(\omega)\in A_i') =\sum_{i=1}^m a_i I(\omega\in T^{-1}(A_i'))=\sum_{i=1}^m a_i I_{T^{-1}(A_i')}(\omega),\mbox{ }\mbox{ } \omega\in \Omega.\\ \implies\int_\Omega f(T(\omega))d\mu(\omega)=\sum_{i=1}^m a_i \mu({T^{-1}(A_i')})=\sum_{i=1}^m a_i \mu_T(A_i')= \int_{\Omega'}f(\omega')d\mu_T(\omega'). \]
Suppose that \(X\) is a finite-valued random variable on a probability space \((\Omega, \mathcal{F},P)\), i.e., \(X:\Omega\rightarrow \mathbb{R}\) is \(\mathcal{F}\)-measurable. Then for any Borel measurable \(g\)
Let \(P_X=P\circ X^{-1}\) be the distribution of \(X\) (a probability measure on \((\mathbb{R}, \mathcal{R})\)), and let \(F_X\) be the corresponding distribution function
\[ E[g(X)]= \int g(X)dP= \int_\Omega g(X(\omega))dP(\omega)= \int_\mathbb{R} g(x)dP_{x}(x) \]