Remark

Let \(X\) be a (real-valued) random variable. Then as \(n\rightarrow \infty\), \[ \{\omega:|X(\omega)| > n \}\downarrow \phi\implies P(|X|>n)\downarrow 0, \] and because \(P(|X|>t)\) is monotone in \(t\), it follows that \[ \lim_{t\rightarrow \infty}P(|X|>t)=0. \]



자주 쓰인다.

Theorem

If \(X\) is a nonnegative random variable, then \[ E(X)=\int_0^\infty P(X>t)dt = \int_0^\infty P(X\ge t)dt. \]



Corollary

For any random variable \(X\) and \(0<p<\infty\), \[ E(|X|^p)=\int_0^\infty P(|X|>t^{1/p})dt=\int_0^\infty P(|X|\ge t^{1/p})dt. \]



매우 자주 쓰인다.

Corollary

For a nonnegative random variable \(X\), \[ \sum_{n=1}^{\infty} P(X\ge n)\le E(X)\le \sum_{n=0}^\infty P(X>n), \] and \(E(X)<\infty\) if and only if \(\sum_{n=1}^\infty P(X\ge n)<\infty\).



Theorem(Tail Rate from pth Moment)

If \(X\in L^p\) for some \(0<p<\infty\), then \[ t^p P(|X|\ge t)\rightarrow 0 \mbox{ }\mbox{ }\mbox{ as }\mbox{ }\mbox{ }t\rightarrow \infty. \]

  1. \(|X|^p I_{\{|X|^p\ge t\}} \le |X|^p\) (\(t\)에 영향을 받지 않는다);

  2. \(|X|^p\in L^p\), integrable;

  3. \(|X|^p I_{\{|X|^p\ge t\}} \rightarrow 0\) as \(t\rightarrow \infty\);

때문에 \(\int |X|^p I_{\{|X|^p\ge t\}} dP \rightarrow 0\) as \(t\rightarrow \infty\)이고, 따라서 \[ t^pP(|X|^p\ge t)\le \int |X|^p I_{\{|X|^p\ge t\}} \mbox{ }dP \rightarrow 0 \mbox{ }\mbox{ }\mbox{ as }\mbox{ } t\rightarrow \infty\\ \implies t^pP(|X|^p\ge t)\rightarrow 0 \mbox{ }\mbox{ }\mbox{ as }\mbox{ } t\rightarrow \infty. \]



back