매우 중요하다.

들어가기에 앞서, set들의 supremum(least upper bound)은 합집합(제일 큰 집합), set들의 infimum(greatest lower bound)은 교집합(제일 작은 집합)임을 염두에 두자.

Definition

For a sequence \(\{A_n: n\ge 1\}\) of subsets of \(\Omega\), we define the limit superior and the limit inferior by \[ \limsup_{n\rightarrow \infty}A_n = \bigcap_{n=1}^\infty \bigcup_{k=n}^\infty A_k\mbox{ }\mbox{ }\mbox{ and }\mbox{ }\mbox{ } \liminf_{n\rightarrow \infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k. \] If \(\liminf_nA_n = \limsup_nA_n=A\), then we say that the limit of \(A_n\) exists and we write \(\lim_n A_n=A\).




Remark

  1. Note that \(\omega \in \limsup_n A_n\) if and only if \(\omega \in A_n\) infinitely often(i.o) in \(n\): \[ \limsup_n A_n =\{ \omega \in \Omega: \forall n\ge 1\mbox{ } \exists k\ge n \mbox{ s.t. }\omega \in A_k \}=\{\omega\in \Omega: \omega\in A_n \mbox{ i.o.}(n) \}; \] and \(\omega \in \liminf_n A_n\) if and only if \(\omega \in A_n\) for all but finitely many(almost all) \(n\): \[ \liminf_n A_n =\{ \omega \in \Omega: \exists n\ge 1\mbox{ } \mbox{ s.t. }\omega \in A_k \mbox{ }\forall k\ge n \}=\{\omega\in \Omega: \omega\in A_n \mbox{ a.a.}(n) \}. \]


  1. From 1. it is clear that \(\liminf_nA_n\subset \limsup_nA_n\) and that \[ I_{\limsup_nA_n}=\limsup_nI_{A_n}\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ and }\mbox{ }\mbox{ }\mbox{ }\mbox{ } I_{\liminf_nA_n}=\liminf_nI_{A_n} \]
    • Note: \(I_{\limsup_nA_n}=I_{\cap_n \{\cup_{k\ge n} A_n\}}=\wedge_n I_{\cup_{k\ge n} A_n}=\wedge_n\vee_{k\ge n}I_{A_n}=\limsup I_{A_n}\).


  1. By de Morgan’s law, \((\limsup_n A_n)^c=\liminf_n A_n^c\) or equivalently \((\liminf_n A_n)^c=\limsup_n A_n^c\).

    • Note: \((\limsup_n A_n)^c=(\cap_n\cup_{k\ge n}A_n)^c=\cup_n\cap_{k\ge n}A_n^c=\liminf_n A_n^c\).


  1. The limit superior and the limit inferior can be expressed as monotone limits:

\[ \bigcap_{k=n}^\infty A_n \uparrow \liminf_n A_n, \mbox{ }\mbox{ }\mbox{ }\mbox{ } \bigcup_{k=n}^\infty A_n \downarrow \limsup_n A_n\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty. \]



Theorem

If \((\Omega, \mathcal{F},P)\) is a probability space, and \(A_n\in \mathcal{F}\), \(n\ge 1\), then

  1. \(P(\liminf_nA_n)\le \liminf_nP(A_n)\le \limsup_n P(A_n)\le P(\limsup_n A_n)\);

  2. if \(A_n\rightarrow A\), then \(P(A_n)\rightarrow P(A)\).




이 chapter의 핵심 Theorem

Theorem (Borel-Cantelli lemma : convergence half)

If \(\sum_{k=n}^\infty \mu(A_k)<\infty\) for some \(n\ge 1\), then \(\mu(\limsup_n A_n)=0\).




back