매우 중요하다.
들어가기에 앞서, set들의 supremum(least upper bound)은 합집합(제일 큰 집합), set들의 infimum(greatest lower bound)은 교집합(제일 작은 집합)임을 염두에 두자.
For a sequence \(\{A_n: n\ge 1\}\) of subsets of \(\Omega\), we define the limit superior and the limit inferior by \[ \limsup_{n\rightarrow \infty}A_n = \bigcap_{n=1}^\infty \bigcup_{k=n}^\infty A_k\mbox{ }\mbox{ }\mbox{ and }\mbox{ }\mbox{ } \liminf_{n\rightarrow \infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k. \] If \(\liminf_nA_n = \limsup_nA_n=A\), then we say that the limit of \(A_n\) exists and we write \(\lim_n A_n=A\).
By de Morgan’s law, \((\limsup_n A_n)^c=\liminf_n A_n^c\) or equivalently \((\liminf_n A_n)^c=\limsup_n A_n^c\).
\[ \bigcap_{k=n}^\infty A_n \uparrow \liminf_n A_n, \mbox{ }\mbox{ }\mbox{ }\mbox{ } \bigcup_{k=n}^\infty A_n \downarrow \limsup_n A_n\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty. \]
If \((\Omega, \mathcal{F},P)\) is a probability space, and \(A_n\in \mathcal{F}\), \(n\ge 1\), then
\(P(\liminf_nA_n)\le \liminf_nP(A_n)\le \limsup_n P(A_n)\le P(\limsup_n A_n)\);
if \(A_n\rightarrow A\), then \(P(A_n)\rightarrow P(A)\).
Note : \[\begin{eqnarray*}
\cap_{k=n}^\infty A_n \subset A_n\mbox{ }\mbox{ }\mbox{ }\forall n\ge 1&\stackrel{\text{monotone}}{\implies}& P(\cap_{k=n}^\infty A_n)\le P(A_n)\\
&\implies&\lim_nP( \cap_{k=n}^\infty A_n)\le \liminf_n P(A_n)\\
\cap_{k=n}^\infty A_n \uparrow \liminf_n A_n &\stackrel{\text{ctn from below}}{\implies}& P(\cap_{k=n}^\infty A_n)\uparrow P( \liminf_n A_n)\\&\implies& \lim_nP(\cap_{k=n}^\infty A_n)= P( \liminf_n A_n)\\
\end{eqnarray*}\]
\(\therefore P( \liminf_n A_n)\le \liminf_n P(A_n)\). Also, \[\begin{eqnarray*}
\cup_{k=n}^\infty A_n \supset A_n\mbox{ }\mbox{ }\mbox{ }\forall n\ge 1&\stackrel{\text{monotone}}{\implies}& P(\cup_{k=n}^\infty A_n)\ge P(A_n)\\
&\implies&\lim_nP( \cup_{k=n}^\infty A_n)\ge \limsup_n P(A_n)\\
\cup_{k=n}^\infty A_n \downarrow \limsup_n A_n &\stackrel{\text{ctn from above}}{\implies}& P(\cup_{k=n}^\infty A_n)\downarrow P( \limsup_n A_n)\\&\implies& \lim_nP(\cup_{k=n}^\infty A_n)= P( \limsup_n A_n)\\
\end{eqnarray*}\]
\(\therefore \limsup_n P(A_n)\le P( \limsup_n A_n)\).
Let \(A_n\rightarrow A\). Then, \(\limsup_nA_n=\liminf_nA_n=A\). Then, from 1. \[ P(\liminf_nA_n)\le \liminf_nP(A_n)\le \limsup_n P(A_n)\le P(\limsup_n A_n)\\ \implies P(A)\le \liminf_nP(A_n)\le \lim_nP(A_n) \le \limsup_n P(A_n)\le P(A). \] Thus, \(\lim_nP(A_n)=P(A)\).
이 chapter의 핵심 Theorem
If \(\sum_{k=n}^\infty \mu(A_k)<\infty\) for some \(n\ge 1\), then \(\mu(\limsup_n A_n)=0\).
우선 \(\sum_{k=n}^\infty \mu(A_k)<\infty\) for some \(n\) \(\implies \lim_{n\rightarrow\infty}\sum_{k=n}^\infty \mu(A_k)=0\)(꼬리부분은 0이다).
Note that \(\limsup_{n\rightarrow \infty}A_n = \bigcap_{n=1}^\infty \bigcup_{k=n}^\infty A_k \subset \bigcup_{k=n}^\infty A_k\) \(\forall n\ge 1\). Thus, by monotonicity and subadditivity, \[ \mu(\limsup_n A_n)\le \mu(\cup_{k=n}^\infty A_k) \le \sum_{k=n}^\infty \mu(A_k)\mbox{ }\mbox{ }\mbox{ for all }n\ge 1\\ \implies \mu(\limsup_n A_n)\le \lim_{n\rightarrow \infty} \sum_{k=n}^\infty \mu(A_k)=0. \]