A sequence \(\{f_n:n\ge 1\}\) of \(L^p\) functions, \(0<p<\infty\) is said to converge in \(L^p\) to a measurable function \(f\) (written \(f_n\stackrel{L^p}\rightarrow f\)) if \[ \int |f_n-f|^p d\mu\rightarrow 0\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty. \] In special case, if \(X_n\) and \(X\) are random variables \(X_n\stackrel{L^p}\rightarrow X\), \[ \int |X_n-X|^p d\mu\rightarrow 0\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty, \] then we sometimes say that \(X_n\) converges to \(X\) in \(p\)th mean.
For \(1\le p<\infty\), \(f_n\stackrel{L^p}\rightarrow f\) is equivalent to \(||f_n-f||_p\rightarrow 0\), and this is also the definition for the case \(p=\infty\),
i.e., a sequence \(\{f_n,n\ge 1\}\) of \(L^\infty\) functions is said to converge in \(L^\infty\) to a measurable function \(f\) if \(||f_n-f||_\infty\rightarrow 0\) as \(n\rightarrow \infty\).
If \(f_n\stackrel{L^p}\rightarrow f\) form some \(0<p\le \infty\), then \(f\in L^p\).
\[
|f|^p=|(f_n-f)-f_n|^p\le (|f_n-f|+|f_n|)^p \le 2^p(|f_n-f|^p+|f_n|^p).
\]
매우 중요
If \(f_n\stackrel{L^p}\rightarrow f\) form some \(0<p\le \infty\), then \(f_n\stackrel{\mu}\rightarrow f\).
\[ \mu(|f_n-f|>\epsilon)=\mu(|f_n-f|^p>\epsilon^p)\le \frac{1}{\epsilon^p}\int |f_n-f|^pd\mu\rightarrow 0\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty \mbox{ }\mbox{ }\mbox{ for all }\epsilon>0 . \]
중요
For \(0<p\le \infty\), the space \(L^p\) is complete:
a sequence of \(L^p\) function converges in \(L^p\) if and only if the sequence is Cauchy in \(L^p\).
\(\{f_n\}\in L^p\)에 대해 \(f_n\stackrel{L^p}\rightarrow f\)라면
\(f\in L^p\);
\(f_n\stackrel{\mu}\rightarrow f\) (\(L^p\) convergence \(\implies\) convergence in measure);
Convergenge in \(L^p\) \(\iff\) Cauchy in \(L^p\) (\(L^p\) space is complete).