이 파트부터는 a.e.를 a.s.(Almost Sure Convergence)로 바꿔서 사용한다.


Theorem(Borel-Cantelli Lemma: convergence half)

If \(\sum_{n=1}^{\infty}P(A_n)<\infty\), then \(P(\limsup_nA_n)=0\).




Theorem

The followings are equivalent:

  1. \(X_n\rightarrow X\) a.s.

  2. \(P(|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n))=0\) for all \(\epsilon >0\).

  3. \(P(|X_n-X|>1/k\mbox{ }\mbox{ }\mbox{ i.o}(n))=0\) for all(integer) \(k\ge 1\).



Corollary

If \(\sum_{n=1}^\infty P(|X_n-X|>\epsilon)<\infty\) for all \(\epsilon>0\), then \(X_n\rightarrow X\) a.s.



Theorem

If \(X_n\stackrel{\text{Pr}}\rightarrow X\), then there exists a subsequence \(\{X_{n_k}:k\ge 1\}\) for which \(X_{n_k}\rightarrow X\) a.s.



Theorem

A sequence of random variables \(\{X_n:n\ge 1\}\) is Cauchy in probability if and only if there exists a random variable \(X\) for which \(X_n\stackrel{\text{Pr}}\rightarrow X\) as \(n\rightarrow \infty\).




Theorem

If \(X_n\stackrel{L^p}\rightarrow X\) for some \(0<p\le \infty\), then \(X_n\stackrel{\text{Pr}}\rightarrow X\).



Theorem(Riesz-Fisher)

For \(0<p\le\infty\), the space \(L^p\) is complete: a sequence \(\{X_n,n\ge 1\}\) of random variables converges in \(p\)th mean(i.e., there exists an \(X\in L^p\) s.t. \(||X_n-X||_p\rightarrow 0\)) if and only if the sequence is Cauchy in \(L^p\)(i.e., \(||X_m-X_n||_p\rightarrow 0\) as \(m,n\rightarrow \infty\)).



Theorem

\(X_n\rightarrow X\) a.s. if and only if \(\sup_{m\ge n}|X_m-X|\stackrel{\text{Pr}}\rightarrow 0\) as \(n\rightarrow \infty\).


\[ \sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}= \bigcup_{m= n}^\infty\left\{|X_m-X|>\epsilon\right\}\downarrow \bigcap_{n=1}^\infty \bigcup_{m= n}^\infty\{|X_m-X|>\epsilon \}=\{|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n)\},\\ \implies P\left(\sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}\right)\downarrow P(|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n)),\\ \implies \lim_{n\rightarrow\infty} P\left(\sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}\right)=P(|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n)). \] Thus, \(X_n\rightarrow X\) a.s. if and only if \(P\left(\sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}\right)\rightarrow 0\iff \sup_{m\ge n}|X_n-X|\stackrel{\text{Pr}}\rightarrow 0\).



매우 중요하다.

Corollary

If \(X_n\rightarrow X\) a.s., then \(X_n\stackrel{\text{Pr}}\rightarrow X\)



Theorem

\(\{X_n:n\ge 1\}\) converges a.s. if and only if \(\sup_{m\ge n}|X_m-X_n|\stackrel{\text{Pr}}\rightarrow 0\) as \(n\rightarrow \infty\).




Theorem

\(X_n\stackrel{\text{Pr}}\rightarrow X\) if and only if for every subsequence \(\{X_{n_k},k\ge 1\}\) there exists a further subsequence \(\{X_{n_{kj}},j\ge 1\}\) such that \(X_{n_{kj}}\rightarrow X\) a.s.



Theorem(Continuous Mapping Theorem for convergence in probability: first version)

If \(X_n\stackrel{\text{Pr}}\rightarrow X\) and \(f:\mathbb{R}\rightarrow\mathbb{R}\) is continuous, then \(f(X_n)\stackrel{\text{Pr}}\rightarrow f(X)\).




Lemma

Let \(f:\mathbb{R}\rightarrow \mathbb{R}\). Then, the set \(D_f=\{x\in\mathbb{R} : \mbox{ f is discontinuous at }x\}\) is a Borel set.



Theorem(Continuous Mapping Theorem for convergence in probability: first version)

Let \(f:\mathbb{R}\rightarrow \mathbb{R}\) be Borel measurable, and let \(D_f\) be the set of discontinuity points of \(f\).

If \(X_n\stackrel{\text{Pr}}\rightarrow X\) and \(P(X\in D_f)=0\), then \(X_n\stackrel{\text{Pr}}\rightarrow X\).




요약

  1. BC-lemma(매우 중요) : \(\sum_{n=1}^{\infty}P(A_n)<\infty\implies P(\limsup_nA_n)=0\).

  2. Riesz-Fisher(중요하다) : \(\{X_n,n\ge 1\}\): Convergenge in \(L^p\) \(\iff\) Cauchy in \(L^p\) (\(L^p\) space is complete).

  3. \(X_n\rightarrow X\) a.s. \(\iff \sup_{m\ge n}|X_m-X|\stackrel{\text{Pr}}\rightarrow 0\)

  4. \(X_n\rightarrow X\) a.s. \(\iff \sup_{m\ge n}|X_m-X_n|\stackrel{\text{Pr}}\rightarrow 0\) as \(n\rightarrow \infty\)

  5. \(X_n\stackrel{\text{Pr}}\rightarrow X\) if and only if \(\exists\) \(X_{n_{kj}}\rightarrow X\) a.s.(Continuous mapping theorem을 위해 필요)

  6. Continuous Mapping Theorem(매우 중요): \(X_n\stackrel{\text{Pr}}\rightarrow X\) and \(f:\mathbb{R}\rightarrow\mathbb{R}\) is continuous\(\implies f(X_n)\stackrel{\text{Pr}}\rightarrow f(X)\).



back