이 파트부터는 a.e.를 a.s.(Almost Sure Convergence)로 바꿔서 사용한다.
If \(\sum_{n=1}^{\infty}P(A_n)<\infty\), then \(P(\limsup_nA_n)=0\).
확률 공간이라서 (probability는 0부터 1사이 값을 가지므로) summation의 범위가 1부터로 바뀌었다.
증명 방법은 똑같다: \(\sum_{n=1}^{\infty}P(A_n)<\infty\implies \sum_{k=n}^\infty P(A_k)\rightarrow 0\) as \(n\rightarrow\infty\)(꼬리부분은 0이다).
The followings are equivalent:
\(X_n\rightarrow X\) a.s.
\(P(|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n))=0\) for all \(\epsilon >0\).
\(P(|X_n-X|>1/k\mbox{ }\mbox{ }\mbox{ i.o}(n))=0\) for all(integer) \(k\ge 1\).
If \(\sum_{n=1}^\infty P(|X_n-X|>\epsilon)<\infty\) for all \(\epsilon>0\), then \(X_n\rightarrow X\) a.s.
If \(X_n\stackrel{\text{Pr}}\rightarrow X\), then there exists a subsequence \(\{X_{n_k}:k\ge 1\}\) for which \(X_{n_k}\rightarrow X\) a.s.
A sequence of random variables \(\{X_n:n\ge 1\}\) is Cauchy in probability if and only if there exists a random variable \(X\) for which \(X_n\stackrel{\text{Pr}}\rightarrow X\) as \(n\rightarrow \infty\).
If \(X_n\stackrel{L^p}\rightarrow X\) for some \(0<p\le \infty\), then \(X_n\stackrel{\text{Pr}}\rightarrow X\).
For \(0<p\le\infty\), the space \(L^p\) is complete: a sequence \(\{X_n,n\ge 1\}\) of random variables converges in \(p\)th mean(i.e., there exists an \(X\in L^p\) s.t. \(||X_n-X||_p\rightarrow 0\)) if and only if the sequence is Cauchy in \(L^p\)(i.e., \(||X_m-X_n||_p\rightarrow 0\) as \(m,n\rightarrow \infty\)).
\(X_n\rightarrow X\) a.s. if and only if \(\sup_{m\ge n}|X_m-X|\stackrel{\text{Pr}}\rightarrow 0\) as \(n\rightarrow \infty\).
\[ \sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}= \bigcup_{m= n}^\infty\left\{|X_m-X|>\epsilon\right\}\downarrow \bigcap_{n=1}^\infty \bigcup_{m= n}^\infty\{|X_m-X|>\epsilon \}=\{|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n)\},\\ \implies P\left(\sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}\right)\downarrow P(|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n)),\\ \implies \lim_{n\rightarrow\infty} P\left(\sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}\right)=P(|X_n-X|>\epsilon\mbox{ }\mbox{ }\mbox{ i.o}(n)). \] Thus, \(X_n\rightarrow X\) a.s. if and only if \(P\left(\sup_{m\ge n}\left\{|X_m-X|>\epsilon\right\}\right)\rightarrow 0\iff \sup_{m\ge n}|X_n-X|\stackrel{\text{Pr}}\rightarrow 0\).
매우 중요하다.
If \(X_n\rightarrow X\) a.s., then \(X_n\stackrel{\text{Pr}}\rightarrow X\)
\(\{X_n:n\ge 1\}\) converges a.s. if and only if \(\sup_{m\ge n}|X_m-X_n|\stackrel{\text{Pr}}\rightarrow 0\) as \(n\rightarrow \infty\).
(\(\implies\)): \(X_n\) converges a.s.라 하자.
그렇다면 for every \(\omega\), \(\{X_n(\omega),n\ge 1\}\)은 Cauchy sequence이다, i.e., \(\forall\) \(\omega\), \(|X_m(\omega)-X_n(\omega)|\rightarrow 0\) as \(m,n\rightarrow \infty\). Thus, \[ \sup_{m\ge n}|X_m(\omega)-X_n(\omega)|\rightarrow 0 \mbox{ }\mbox{ }\mbox{ a.s. } \mbox{ }\mbox{ } \mbox{ as } n\rightarrow \infty. \] Because almost sure convergence implies convergence in probability, it follows that \[ \sup_{m\ge n}|X_m(\omega)-X_n(\omega)|\stackrel{\text{Pr}}\rightarrow 0 \mbox{ }\mbox{ }\mbox{ }\mbox{ as } n\rightarrow \infty. \]
(\(\Longleftarrow\)): \(\sup_{m\ge n}|X_m(\omega)-X_n(\omega)|\stackrel{\text{Pr}}\rightarrow 0\) as \(n\rightarrow \infty\)라고 하자. 그렇다면 For any \(m\ge n\), \[ P(|X_m-X_n|>\epsilon)\le P\left(\sup_{m\ge n}\{|X_m-X_n|>\epsilon\}\right)\\ \implies \sup_{m\ge n}P(|X_m-X_n|>\epsilon) \le P\left(\sup_{m\ge n}\{|X_m-X_n|>\epsilon\}\right)\rightarrow 0\mbox{ }\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty. \] Thus, \(\{X_n,n\ge 1\}\) is cauchy in probability \(\iff\) \(\exists\) a random variable \(X\) s.t \(X_n\stackrel{\text{Pr}}\rightarrow X\) as \(n\rightarrow \infty\).
Note that \(|X_m-X|\le |X_m-X_n|+|X_n-X|\) for all \(m\ge n\), so that \[ \sup_{m\ge n}\{|X_m-X|\}\le \sup_{m\ge n}\{|X_m-X_n|+ |X_n-X|\}. \] Thus, \[\begin{eqnarray*} P\left( \sup_{m\ge n}|X_m-X|>\epsilon\right)&\le&P\left(\sup_{m\ge n}\{|X_m-X_n|+ |X_n-X|>\epsilon\}\right)\\ &\le&P(\sup_{m\ge n}\{|X_m-X_n|>\epsilon/2\})+P(|X_n-X|>\epsilon/2)\rightarrow 0 \mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty. \end{eqnarray*}\] Thus, \(X_n\rightarrow X\) a.s.
\(X_n\stackrel{\text{Pr}}\rightarrow X\) if and only if for every subsequence \(\{X_{n_k},k\ge 1\}\) there exists a further subsequence \(\{X_{n_{kj}},j\ge 1\}\) such that \(X_{n_{kj}}\rightarrow X\) a.s.
(\(\implies\)): 기존에 했으므로 생략
(\(\Longleftarrow\)): Note that \[\begin{eqnarray*} X_n \stackrel{\text{Pr}}\nrightarrow X&\implies& X_{n_k} \stackrel{\text{Pr}}\nrightarrow X\mbox{ }\mbox{ }\mbox{ for any subsequence }n_k\\ &\implies& X_{n_{kj}}\nrightarrow X \mbox{ }\mbox{ a.s.}\\ \iff X_{n_{kj}}\rightarrow X &\implies& X_n\stackrel{\text{Pr}}\rightarrow X.\mbox{ (대우명제)} \end{eqnarray*}\]
If \(X_n\stackrel{\text{Pr}}\rightarrow X\) and \(f:\mathbb{R}\rightarrow\mathbb{R}\) is continuous, then \(f(X_n)\stackrel{\text{Pr}}\rightarrow f(X)\).
Let \(f:\mathbb{R}\rightarrow \mathbb{R}\). Then, the set \(D_f=\{x\in\mathbb{R} : \mbox{ f is discontinuous at }x\}\) is a Borel set.
\(D_f=\{x\in\mathbb{R} : \mbox{ f is discontinuous at }x\}\)도 어떤 실선 안에서의 interval이므로 쉽게 Borel set이라고 생각할 수 있다 (\(\phi\)또한 Borel set이다).
한 discontinuity point, say \(\{a\}\) 또한 Borel set이다. Chapter 1.1에서 마지막 Borel set에서의 예제를 확인하면 \(\mathcal{I}_0\)에서의 \(a=b\)일 때와 같다. \(\{a\}\)와 이 set의 여집합의 합은 \(\mathbb{R}\)이다.
Let \(f:\mathbb{R}\rightarrow \mathbb{R}\) be Borel measurable, and let \(D_f\) be the set of discontinuity points of \(f\).
If \(X_n\stackrel{\text{Pr}}\rightarrow X\) and \(P(X\in D_f)=0\), then \(X_n\stackrel{\text{Pr}}\rightarrow X\).
Discontinuity point가 없다는 뜻이 아니라, measure가 0라는 뜻이다.
즉 interval안에서 point 하나만 discontinuous한 경우(좌극한과 우극한이 같다) continuous mapping theorem을 사용할 수 있다.
BC-lemma(매우 중요) : \(\sum_{n=1}^{\infty}P(A_n)<\infty\implies P(\limsup_nA_n)=0\).
Riesz-Fisher(중요하다) : \(\{X_n,n\ge 1\}\): Convergenge in \(L^p\) \(\iff\) Cauchy in \(L^p\) (\(L^p\) space is complete).
\(X_n\rightarrow X\) a.s. \(\iff \sup_{m\ge n}|X_m-X|\stackrel{\text{Pr}}\rightarrow 0\)
\(X_n\rightarrow X\) a.s. \(\iff \sup_{m\ge n}|X_m-X_n|\stackrel{\text{Pr}}\rightarrow 0\) as \(n\rightarrow \infty\)
\(X_n\stackrel{\text{Pr}}\rightarrow X\) if and only if \(\exists\) \(X_{n_{kj}}\rightarrow X\) a.s.(Continuous mapping theorem을 위해 필요)
Continuous Mapping Theorem(매우 중요): \(X_n\stackrel{\text{Pr}}\rightarrow X\) and \(f:\mathbb{R}\rightarrow\mathbb{R}\) is continuous\(\implies f(X_n)\stackrel{\text{Pr}}\rightarrow f(X)\).