Definition

Two events \(A,B\in \mathcal{F}\) are independent if \(P(A\cap B)=P(A)P(B)\).



Definition

Events \(A_1,\ldots A_n\) are independent if \[ P(A_{i_1}\cap\cdots \cap A_{i_m})=P(A_{i_1})\cdots P(A_{i_m}) \] for all \(2\le m\le n\) and \(1\le i_1<\cdots<i_m\le n\).



Lemma

Events \(A_1,\ldots,A_n\) are independent if and only if \[ P(B_1\cap\cdots B_n)=P(B_1)\cdots P(B_n) \] for all \(B_1,\ldots,B_n\) where for each \(i=1,\ldots,n\), either \(B_i=A_i\) or \(B_i=\Omega\).



Definition

Events \(A_t, t\in T\) are independent if for every finite collection of distinct indicies \(\{t_1,\ldots,t_n\}\subset T\), \[ P(A_{t_1}\cap\cdots\cap A_{t_n})=P(A_{t_1})\cdots P(A_{t_n}). \] Equivalently, events \(A_t,t\in T\) are independent if and only if the events in every finite subcollection are independent.



Definition(Independent Classes of Events)

Classes of events \(\mathcal{A}_1,\ldots,\mathcal{A}_n\) are independent if for every choice of events \(A_i\in \mathcal{A}_i\), \(i=1,\ldots,n\), the events \(A_1,\ldots,A_n\) are independent.



Lemma

Classes of events \(\mathcal{A}_1,\ldots,\mathcal{A}_n\) are independent if and only if \[ P(B_1\cap\cdots\cap B_n)=P(B_1)\cdots P(B_n) \tag{*} \] for all \(B_i\in \mathcal{B}_i, i=1,\ldots,n\), where \(\mathcal{B}_i=\mathcal{A}_i\cup\{\Omega\}\).



Theorem

If \(\mathcal{A}_1,\ldots,\mathcal{A}_n\) are independent \(\pi\)-systems, then \(\sigma(\mathcal{A}_1),\ldots,\sigma(\mathcal{A}_n)\) are independent \(\sigma\)-fields.



Definition

Classes of events \(\mathcal{A}_t, t\in T\) are independent if for every finite collection of distinct indicies, \(t_1,\ldots,t_n\in T\) and events \(A_{t_i}\in \mathcal{A}_{t_i}, i=1,\ldots,n\), the events \(A_{t_1},\ldots A_{t_n}\) are independent.



Corollary

If \(\mathcal{A}_t,t\in T\) are independent \(\pi\)-systems, then \(\sigma(\mathcal{A}_t),t\in T\) are independent \(\sigma\)-fields.



back