복습

Lemma (Borel-Cantelli: convergence half)

Let \(A_n,n\ge 1\) be a sequence of events in a probability space \((\Omega, \mathcal{F},P)\).

If \(\sum_{n=1}P(A_n)<\infty\), then \(P(A_n \mbox{ }\mbox{ i.o}(n))=0\).



매우 중요하다

Lemma (Borel-Cantelli: divergence half)

Let \(A_n,n\ge 1\) be a sequence of independent events.

If \(\sum_{n=1}P(A_n)=\infty\), then \(P(A_n \mbox{ }\mbox{ i.o}(n))=1\).

Corollary(Borel’s Zero-One Law)

Let \(A_n,n\ge 1\) be independent events. Then, if \[ \sum_{n=1}^{\infty}P(A_n)<\infty \mbox{ } \mbox{ } \mbox{ }\mbox{ or } \sum_{n=1}^{\infty}P(A_n)=\infty, \] then, \[ P(A_n\mbox{ }\mbox{ i.o}(n))= 0 \mbox{ }\mbox{ or }\mbox{ }1, \mbox{ }\mbox{ respectively}. \]



back