If \(\{X_n,n\ge 1\}\) is a sequence of random variables on \((\Omega,\mathcal{F},P)\), then the tail \(\sigma\)-field determined by \(\{X_n\}\) is given by \[ \mathcal{T}=\bigcap_{n=1}^{\infty} \sigma(X_n,X_{n+1},\ldots). \]
If \(A\in \mathcal{T}\), then \(A\) is called a tail event.
\(\left\{\omega\in \Omega: \sum_{n=1}^{\infty}X_n(\omega)\mbox{ converges }\right\}\in \mathcal{T}\), because \[\begin{eqnarray*} \left\{\omega\in \Omega: \sum_{n=1}^{\infty}X_n(\omega)\mbox{ converges }\right\}=\left\{\omega\in \Omega: \sum_{n=m}^{\infty}X_n(\omega)\mbox{ converges }\right\}&\in& \sigma(X_m,X_{m+1},\ldots)\mbox{ }\forall m\ge 1\\ \implies \left\{\omega\in \Omega: \sum_{n=1}^{\infty}X_n(\omega)\mbox{ converges }\right\}\in\bigcap_{m=1}^\infty \sigma(X_m,X_{m+1},\ldots). \end{eqnarray*}\]
If \(\{X_n,n\ge 1\}\) is a sequence of independent random variables and \(A\) is a tail event, then either \(P(A)=0\) or \(P(A)=1\)
즉 tail event는 반드시 일어나거나 일어나지 않거나 둘중 하나이다.
때문에 Borel Zero-One Law도 \(P(A_n \mbox{ }\mbox{ i.o}(n))\)도 0또는 1인 것이다\((P(A_n \mbox{ }\mbox{ i.o}(n))=P(\limsup A_n)\)이기 때문에 이는 tail event이다\()\).