중요(자주 응용된다)

Definition(Tail Equivalence)

Two sequences of random variables \(\{X_n,n\ge 1\}\) and \(\{X_n^*,n\ge 1\}\) are tail equivalent if \[ \sum_{n=1}^\infty P(X_n\ne X_n^*)<\infty. \]



매우 자주 사용된다.

Remark

If \(\{X_n,n\ge 1\}\) and \(\{X_n^*,n\ge 1\}\) are tail equivalent, then by the convergence-half of the Borel-Cantelli lemma, \[ P(X_n\ne X_n^* \mbox{ }\mbox{ i.o}(n))=0, \] i.e., \[ P(X_n= X_n^* \mbox{ }\mbox{ a.a}(n))=1, \] i.e., for almost all \(\omega\), there exists \(N_\omega\) s.t. \(X_n(\omega)=X_n^*(\omega)\) for all \(n\ge N(\omega)\). From this, it follows that for tail equivalent sequences,

  1. \(\sum_{n=1}^\infty (X_n-X_n^*)\) converges a.s.

  2. \(\sum_{n=1}^\infty X_n\) converges a.s. \(\iff\) \(\sum_{n=1}^\infty X_n^*\) converges a.s.

  3. If \(a_n\rightarrow \infty\), then \[ \frac{1}{a_n}\sum_{i=1}^n X_i \mbox{ converges a.s.} \iff \frac{1}{a_n}\sum_{i=1}^n X_i^*\mbox{ converges a.s.} \]



정말 매우 반드시 중요하다.

Theorem(Kolmogorov’s Three Series Theorem)

Suppose that \(X_1,X_2,\ldots\) are independent random variables. Then,

\(\sum_{n=1}^\infty X_n\) converges a.s. \(\iff\) \(\exists\) \(c>0\) s.t. the following holds:

  1. \(\sum_{n=1}^\infty P(|X_n|>c)<\infty\);

  2. \(\sum_{n=1}^\infty E\left(X_nI_{\{|X_n|\le c\}}\right)\) converges;

  3. \(\sum_{n=1}^\infty \text{Var}\left(X_nI_{\{|X_n|\le c\}}\right)<\infty\).

Furthermore \(\sum_{n=1}^\infty X_n\) converges a.s.\(\implies\) 1,2,3 hold for all \(c>0\)(not exists, for all).




Theorem(Marcinkiewicz-Zygmund Convergence Theorem)

Suppose that \(0<p<2\), and let \(X_1,X_2,\ldots\) be i.i.d \(L^p\) random variable (i.i.d임에 주목하자). Define \[ Y_n=n^{-\frac{1}{p}}X_nI_{\left\{n^{-1/p}|X_n|\le 1\right\}}, \mbox{ }\mbox{ }\mbox{ }n\ge 1. \] Then, \[ \sum_{n=1}^\infty \left[n^{-1/p} X_n-E(Y_n)\right]\mbox{ }\mbox{ }\mbox{ converges a.s.} \] Moreover, if either

  1. \(0<p<1\), or

  2. \(1<p<2\) and \(E(X_1)=0\),

then

\[ \sum_{n=1}^\infty n^{-1/p}X_n\mbox{ }\mbox{ }\mbox{ converges a.s.} \]



중요하다

Theorem (Cesaro Averages)

If \(x_n\in\mathbb{R},n\ge 0\) and \(x_n\rightarrow x_0\) as \(n\rightarrow \infty\), then \[ \frac{1}{n}\sum_{k=1}^n x_k\rightarrow x_0\mbox{ }\mbox{ }\mbox{ }\mbox{ as }\mbox{ }n\rightarrow \infty. \]

\[\begin{eqnarray*} \Big|\frac{1}{n}\sum_{k=1}^n x_k-x_0\Big|&=&\Big|\frac{1}{n}\sum_{k=1}^n (x_k-x_0)\Big|\\ &\le& \frac{1}{n}\sum_{k=1}^n \Big|x_k-x_0\Big| = \frac{1}{n}\sum_{k=1}^{N-1} \Big|x_k-x_0\Big|+\frac{1}{n}\sum_{k=N}^n \Big|x_k-x_0\Big|\\ &\le& \frac{1}{n}\sum_{k=1}^{N-1} \Big|x_k-x_0\Big| +\epsilon\longrightarrow \epsilon\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty. \end{eqnarray*}\]



중요하다

Lemma (Kronecker’s Lemma)

For real sequences \(\{x_n,n\ge 1\}\) and \(\{a_n,n\ge 1\}\), with \(0<a_n\uparrow \infty\),

if \[ \sum_{k=1}^\infty \frac{x_k}{a_k}\mbox{ }\mbox{ converges (to a finite limit)}, \] then \[ \frac{1}{a_n}\sum_{k=1}^n x_k\rightarrow 0 \mbox{ }\mbox{ }\mbox{ as }\mbox{ }n\rightarrow \infty. \]



Theorem (Marcinkiewicz-Zygmund Strong Law)

Suppose that \(X_1,X_2,\ldots\) are i.i.d random variables, and \(0<p<2\). Then, for some \(c>0\), \[ \frac{S_n-nc}{n^{1/p}}\rightarrow 0\mbox{ }\mbox{ }\mbox{ a.s.} \iff E(|X_1|^p)<\infty. \] Moreover,

  1. if \(1\le p<2\), then, necessarily \(c=E(X_1)\);

  2. if \(0<p<1\), \(c\) is arbitrary (could be \(0\)).



  1. \(0<p<1:\) \(\sum_{n=1}^\infty n^{-1/p}X_n\) converges a.s.;

  2. \(1<p<2:\) \(\sum_{n=1}^\infty n^{-1/p}[X_n-E(X_n)]\) converges a.s.;

  3. \(p=1:\) \(\sum_{n=1}^\infty n^{-1}[X_n-E(X_1I_{\{|X_1|\le n\}})]\) converges a.s.



Corollary (Classical Strong Law of Large Numbers)

Let \(X_1,X_2,\ldots,\) be i.i.d random variables. Then,

  1. \(S_n/n\rightarrow E(X_1)\) a.s. \(\iff\) \(X_1\in L^1\).

  2. If E(X_1) exists\((-\infty,\infty\)도 포함\()\), then \(S_n/n\rightarrow E(X_1)\) a.s.




back