중요(자주 응용된다)
Two sequences of random variables \(\{X_n,n\ge 1\}\) and \(\{X_n^*,n\ge 1\}\) are tail equivalent if \[ \sum_{n=1}^\infty P(X_n\ne X_n^*)<\infty. \]
즉 \(\lim_{n\rightarrow \infty}\sum_{k=n}^\infty P(X_n\ne X_n^*)=0\implies\) 저세상 끝에서 두 변수는 같다
\(\implies\) 꼬리에서 두 변수가 같다 \(\implies\) Tail-equivalence.
매우 자주 사용된다.
If \(\{X_n,n\ge 1\}\) and \(\{X_n^*,n\ge 1\}\) are tail equivalent, then by the convergence-half of the Borel-Cantelli lemma, \[ P(X_n\ne X_n^* \mbox{ }\mbox{ i.o}(n))=0, \] i.e., \[ P(X_n= X_n^* \mbox{ }\mbox{ a.a}(n))=1, \] i.e., for almost all \(\omega\), there exists \(N_\omega\) s.t. \(X_n(\omega)=X_n^*(\omega)\) for all \(n\ge N(\omega)\). From this, it follows that for tail equivalent sequences,
\(\sum_{n=1}^\infty (X_n-X_n^*)\) converges a.s.
\(\sum_{n=1}^\infty X_n\) converges a.s. \(\iff\) \(\sum_{n=1}^\infty X_n^*\) converges a.s.
If \(a_n\rightarrow \infty\), then \[ \frac{1}{a_n}\sum_{i=1}^n X_i \mbox{ converges a.s.} \iff \frac{1}{a_n}\sum_{i=1}^n X_i^*\mbox{ converges a.s.} \]
정말 매우 반드시 중요하다.
Suppose that \(X_1,X_2,\ldots\) are independent random variables. Then,
\(\sum_{n=1}^\infty X_n\) converges a.s. \(\iff\) \(\exists\) \(c>0\) s.t. the following holds:
\(\sum_{n=1}^\infty P(|X_n|>c)<\infty\);
\(\sum_{n=1}^\infty E\left(X_nI_{\{|X_n|\le c\}}\right)\) converges;
\(\sum_{n=1}^\infty \text{Var}\left(X_nI_{\{|X_n|\le c\}}\right)<\infty\).
Furthermore \(\sum_{n=1}^\infty X_n\) converges a.s.\(\implies\) 1,2,3 hold for all \(c>0\)(not exists, for all).
때문에 만약 1,2,3을 만족하는 \(c>0\)가 존재한다면, \(\sum_{n=1}^\infty X_n\) converges a.s.이고, 때문에 for all \(c>0\)이다
\((a\implies b\implies c\implies a\)와 비슷\()\).
Suppose that \(0<p<2\), and let \(X_1,X_2,\ldots\) be i.i.d \(L^p\) random variable (i.i.d임에 주목하자). Define \[ Y_n=n^{-\frac{1}{p}}X_nI_{\left\{n^{-1/p}|X_n|\le 1\right\}}, \mbox{ }\mbox{ }\mbox{ }n\ge 1. \] Then, \[ \sum_{n=1}^\infty \left[n^{-1/p} X_n-E(Y_n)\right]\mbox{ }\mbox{ }\mbox{ converges a.s.} \] Moreover, if either
\(0<p<1\), or
\(1<p<2\) and \(E(X_1)=0\),
then
\[ \sum_{n=1}^\infty n^{-1/p}X_n\mbox{ }\mbox{ }\mbox{ converges a.s.} \]
중요하다
If \(x_n\in\mathbb{R},n\ge 0\) and \(x_n\rightarrow x_0\) as \(n\rightarrow \infty\), then \[ \frac{1}{n}\sum_{k=1}^n x_k\rightarrow x_0\mbox{ }\mbox{ }\mbox{ }\mbox{ as }\mbox{ }n\rightarrow \infty. \]
\[\begin{eqnarray*} \Big|\frac{1}{n}\sum_{k=1}^n x_k-x_0\Big|&=&\Big|\frac{1}{n}\sum_{k=1}^n (x_k-x_0)\Big|\\ &\le& \frac{1}{n}\sum_{k=1}^n \Big|x_k-x_0\Big| = \frac{1}{n}\sum_{k=1}^{N-1} \Big|x_k-x_0\Big|+\frac{1}{n}\sum_{k=N}^n \Big|x_k-x_0\Big|\\ &\le& \frac{1}{n}\sum_{k=1}^{N-1} \Big|x_k-x_0\Big| +\epsilon\longrightarrow \epsilon\mbox{ }\mbox{ }\mbox{ as }n\rightarrow \infty. \end{eqnarray*}\]
중요하다
For real sequences \(\{x_n,n\ge 1\}\) and \(\{a_n,n\ge 1\}\), with \(0<a_n\uparrow \infty\),
if \[ \sum_{k=1}^\infty \frac{x_k}{a_k}\mbox{ }\mbox{ converges (to a finite limit)}, \] then \[ \frac{1}{a_n}\sum_{k=1}^n x_k\rightarrow 0 \mbox{ }\mbox{ }\mbox{ as }\mbox{ }n\rightarrow \infty. \]
Suppose that \(X_1,X_2,\ldots\) are i.i.d random variables, and \(0<p<2\). Then, for some \(c>0\), \[ \frac{S_n-nc}{n^{1/p}}\rightarrow 0\mbox{ }\mbox{ }\mbox{ a.s.} \iff E(|X_1|^p)<\infty. \] Moreover,
if \(1\le p<2\), then, necessarily \(c=E(X_1)\);
if \(0<p<1\), \(c\) is arbitrary (could be \(0\)).
\(0<p<1:\) \(\sum_{n=1}^\infty n^{-1/p}X_n\) converges a.s.;
\(1<p<2:\) \(\sum_{n=1}^\infty n^{-1/p}[X_n-E(X_n)]\) converges a.s.;
\(p=1:\) \(\sum_{n=1}^\infty n^{-1}[X_n-E(X_1I_{\{|X_1|\le n\}})]\) converges a.s.
In the first case, by Kronecker’s lemma \[ \frac{S_n}{n^{1/p}}=\frac{1}{n^{1/p}}\sum_{i=1}^n X_i\rightarrow 0\mbox{ }\mbox{ a.s.,} \] and from this, it is clear that \(\frac{S_n-nc}{n^{1/p}}\rightarrow 0\) a.s.\((0<p<1)\).
In the second case, by Kronecker’s lemma, \[ \frac{S_n-nE(X_1)}{n^{1/p}}=\frac{1}{n^{1/p}}\sum_{i=1}^n [X_i-E(X_1)]\rightarrow 0\mbox{ }\mbox{ a.s.,} \] and it is clear that \(\frac{S_n-nc}{n^{1/p}}\rightarrow 0\) a.s. only if \(c=E(X_1)\).
In the third case, by Kronecker’s lemma \[ \frac{S_n-\sum_{k=1}^nE(X_1I_{\{|X_1|\le k\}})}{n}=\frac{1}{n}\sum_{k=1}^n\left[X_k-E(X_1I_{\{|X_1|\le k\}})\right]\rightarrow 0\mbox{ }\mbox{ a.s.,} \] By D.C.T, \[ E(X_1I_{\{|X_1|\le k\}})\rightarrow E(X_1)\mbox{ }\mbox{ }\mbox{ as }k\rightarrow \infty, \] and thus, by Cesaro averages, \[ \frac{1}{n}\sum_{k=1}^nE(X_1I_{\{|X_1|\le k\}})\rightarrow E(X_1). \] Hence, \(S_n/n\rightarrow E(X_1)\) a.s., or equivalently \[ \frac{S_n-nE(X_1)}{n}\rightarrow 0 \mbox{ }\mbox{ a.s.,} \] and it is clear that \(\frac{S_n-nc}{n^{1/p}}\rightarrow 0\) holds with \(c=E(X_1)\).
Let \(X_1,X_2,\ldots,\) be i.i.d random variables. Then,
\(S_n/n\rightarrow E(X_1)\) a.s. \(\iff\) \(X_1\in L^1\).
If E(X_1) exists\((-\infty,\infty\)도 포함\()\), then \(S_n/n\rightarrow E(X_1)\) a.s.