Definition (Weak Convergence)

A sequence of distribution functions \(\{F_n, n\ge 1\}\) converges weakly to a distribution function \(F\) if \[ F_n(x)\rightarrow F(x) \] for all continuity point \(x\) of \(F\) \((\)written \(F_x \leadsto F)\).


If \(\mu_n\) and \(\mu\) are probability measures on \((\mathbb{R},\mathcal{R})\), with distribution functions \(F_n\) and \(F\), respectively, then \(\mu_n\) converges weakly to \(\mu\) if \(F_n\leadsto F\) \((\)written \(\mu_n\leadsto\mu)\).


Finally suppose \(X_n\) and \(X\) are r.vs with distribution functions \(F_n\) and \(F\), respectively. If \(F_n \leadsto F\), then we say \(X_n\) converges in distribution to \(X(\)written \(X_n\leadsto X)\).



Proposition

If \(F_n\leadsto F\) and \(F_n\leadsto G\), then \(F=G\).



Proposition

\(X_n\leadsto X\nRightarrow X_n\stackrel{\text{Pr}}\rightarrow X\).




Theorem

If \(X_n\leadsto c\) for some real constant \(c\), then \(X_n\stackrel{\text{Pr}}\nrightarrow c\).



매우 중요하다

Theorem (Skorohod Representation Theorem)

Suppose that \(\mu_n,n\ge 1\) and \(\mu\) are probability measures on \((\mathbb{R},\mathcal{R})\) with \(\mu_n\leadsto \mu\).

Then, there exists a probability space \((\Omega, \mathcal{F},P)\) and random variables \(Y_n,n\ge 1\) and \(Y\), defined on \((\Omega, \mathcal{F},P)\) such that \(Y_n\) has distribution \(\mu_n\) for all \(n\ge 1\), \(Y\) has distribution \(\mu\), and \(Y_n\rightarrow Y\) a.s.




매우 중요하다.

Theorem (General Definition of Weak Convergence)

Let \(C_b(\mathbb{R})\) denote the space of bounded, continuous real-valued functions on \(\mathbb{R}\).

For real-valued random variables \(X_n,n\ge 1\), and \(X\), \[ X_n\leadsto X \iff E[g(X_n)]\rightarrow E[g(X)]\mbox{ }\mbox{ }\mbox{ }\forall\mbox{ }g \in C_b(\mathbb{R}). \] Equivalently, \[ \mu_n\leadsto \mu \iff \int g \mbox{ }d\mu_n\rightarrow \int g \mbox{ }d\mu \mbox{ }\mbox{ }\mbox{ }\forall\mbox{ }g \in C_b(\mathbb{R}). \] For probability distribution functions on \((\mathbb{R},\mathcal{R})\), and for distribution functions, \[ F_n\leadsto F \iff\int g \mbox{ }dF_n\rightarrow \int g \mbox{ }dF \mbox{ }\mbox{ }\mbox{ }\forall\mbox{ }g \in C_b(\mathbb{R}). \]



Corollary

\(X_n\stackrel{\text{Pr}}\rightarrow X\implies X_n\leadsto X\).




매우 중요하다.

Theorem (Continuous Mapping Theorem for Convergence in Distribution)

If \(X_n\leadsto X\) and if \(g:\mathbb{R}\rightarrow \mathbb{R}\) is Borel measurable with \(P(X\in D_g)=0\), then \(g(X_n)\leadsto g(X)\).






정리

  1. 분포수렴: 만약 true distribution \(F\)모든 연속점 \(x\)들에 대해 \(F_n(x)\rightarrow F(x)\)라면 \(F_n\leadsto F\)이다.

  2. \(F_n\leadsto F\) and \(F_n\leadsto G\implies F=G\).

  3. 확률수렴 \(\implies\) 분포수렴, But 분포수렴 \(\nRightarrow\) 확률수렴(상수로 수렴한다면 동치).

  4. Skorohod: \(X_n\leadsto X\)라면 \(Y_n\sim X_n\), \(Y\sim X\), \(Y_n\rightarrow Y\) a.s. 인 \(Y_n, Y\)가 존재한다.

  5. 분포수렴의 일반정의 : \(g\)가 Bounded, continuous func이라 하면, \(X_n\leadsto X \iff E[g(X_n)]\rightarrow E[g(X)]\)(동치).

  6. C.M.T : \(g\)가 Borel measurable이고 continuous func이라면 \(X_n\leadsto X \implies g(X_n)\leadsto g(X)\).



back