Definition

A sequence of random variables \(\{X_n,n\ge 1\}\) is bounded in probability if their associated distributions are tignt, i.e., for any \(\epsilon>0\), there exists a constant \(\mathcal{M}>0\) s.t. \[ P(|X_n|\le \mathcal{M})>1-\epsilon\mbox{ }\mbox{ }\mbox{ for all }n\ge 1. \]



Lemma

If \(\{X_n\}\) is bounded in probability and \(Y_n\leadsto 0\), then \(X_nY_n\leadsto 0\).




Slutsky 이론 증명 위해 필요

Definition

If \(X_n\leadsto 0(\)or equivalently, \(X_n\stackrel{\text{Pr}}\rightarrow 0)\), then we write \(X_n=o_p(1)\).

If \(\{X_n,n\ge 1\}\) is bounded in probability, then we write \(X_n=O_p(1)\).




매우 중요하다

Lemma (Converging Together Lemma)

\(X_n\leadsto X\) and \(Y_n\leadsto Y \implies Y_n\leadsto X\)



매우 중요하다

Theorem (Slutsky’s Theorem)

If for all \(n\ge 1\), \(X_n,A_n\), and \(B_n\) are random variables defined on the same probability space, with \(X_n\leadsto X\), \(A_n\leadsto a\), and \(B_n\leadsto b\), \(a,b\in \mathbb{R}\), then \[ A_n X_n+ B_n \leadsto aX+b. \]

  1. \(X_n\leadsto X\implies \{X_n\}\) is tight(bounded in probability);

  2. \(A_n-a\leadsto a-a =0\), and \(B_n-b\leadsto b-b =0\);

  3. \((A_nX_n+B_n)-(aX_n+b)=(A_n-a)X_n+(B_n-b)= o_p(1)O_p(1)+o_p(1)\leadsto 0\)

  4. \(aX_n+b\leadsto aX+b\).




정리

  1. Bounded in Prob\((O_p(1))\) : \(P(|X_n|\le \mathcal{M})>1-\epsilon\mbox{ }\mbox{ }\mbox{ }\mbox{ }\forall\mbox{ }n\).


  1. \(O_p(1)\), \(o_p(1)\): \(o_p(1)\)\(X_n\leadsto 0\)를, \(X_n=O_p(1)\) 은 bounded in probability를 의미.

    • \(o_p(1)O_p(1)=o_p(1)\); \(X_n\leadsto 0\), \(Y_n\) bounded in prob \(\implies\) \(X_nY_n\leadsto 0\).

    • \(o_p(1)+o_p(1)=o_p(1)\); \(X_n\leadsto 0\), \(Y_n\leadsto 0\implies X_n+Y_n\leadsto 0\).

    • \(O_p(1)+O_p(1)=O_p(1)\); \(X_n, Y_n\) bounded in prob\(\implies X_n+Y_n\) bounded in prob.

    • \(o_p(1)=O_p(1)\); Weak convergence implies bounded in prob.

    • \(O_p(1)\ne o_p(1)\); bounded in prob does not implies weak convergence.


  2. 함께수렴(Converging Together) : \(X_n\leadsto X\) and \(Y_n\leadsto Y \implies Y_n\leadsto X\)


  1. 슬러츠키 : \(X_n\leadsto X\), \(A_n\leadsto a\), \(B_n\leadsto b\implies A_n X_n+ B_n \leadsto aX+b\).



back