\((\mathbb{R}, \mathcal{R})\)에서의 probability measures \(\mu_n\) and \(\mu\)에 대해 아래의 조건은 \((3\implies 2\implies 1)\)이다 (progressively stronger forms);
\(\mu_n\leadsto \mu\).
\(\mu(A)\rightarrow \mu(A)\) for all \(A\in \mathcal{R}\).
\(\sup_{A\in \mathcal{R}}|\mu_n(A)-\mu(A)|\rightarrow 0\).
\((2\implies 1)\): Portmanteau의 마지막 condition \((\lim_n \mu_n(A)=\mu(A)\) for all \(A\in \mathcal{R}\) with \(\mu(\partial A)=0)\).
\((3\implies 2)\): absolute convergence \(\implies\) convergence.
Scheffe’s theorem을 위해 필요
If \(\mu\) and \(\nu\) are probability measures, with densities \(f\) and \(g\) w.r.t some dominating measure \(\gamma\), then
\[ \sup_{A\in \mathcal{F}}|\mu(A)-\nu(A)|=\frac{1}{2}\int|f-g|d\gamma. \]
\(\int(f-g)\mbox{ }d\gamma=\mu(\Omega)-\nu(\Omega)=0\)
\(\implies \int_A(f-g)\mbox{ }d\gamma+ \int_{A^c}(f-g)\mbox{ }d\gamma=0\)
\(\implies |\int_A(f-g)\mbox{ }d\gamma|=|\int_{A^c}(f-g)\mbox{ }d\gamma|\).
Thus, for any \(A\in \mathcal{F}\),
\[\begin{eqnarray*} |\mu(A)-\nu(A)|&=&\left| \int_A (f-g)d\gamma \right|\\ &=& \frac{1}{2}\left| \int_A (f-g)d\gamma \right|+ \frac{1}{2}\left| \int_{A^c} (f-g)d\gamma \right|\\ &\le&\frac{1}{2}\int_A \left| f-g\right|d\gamma + \frac{1}{2} \int_{A^c} \left|f-g\right|d\gamma \\ &=&\frac{1}{2}\int \left| f-g\right|d\gamma. \end{eqnarray*}\]
\[\begin{eqnarray*} |\mu(A)-\nu(A)|&=& \frac{1}{2}\left| \int_A (f-g)d\gamma \right|+ \frac{1}{2}\left| \int_{A^c} (f-g)d\gamma \right|\\ &=&\frac{1}{2}\left|\int_A (f-g)d\gamma\right| + \frac{1}{2}\left|\int_{A^c} (g-f)d\gamma\right| \\ &=&\frac{1}{2}\int_A \left| f-g\right|d\gamma+\frac{1}{2}\int_{A^c} \left| f-g\right|d\gamma= \frac{1}{2}\int \left| f-g\right|d\gamma. \end{eqnarray*}\] 즉, \(\sup_{A\in \mathcal{F}}|\mu(A)-\nu(A)|=\frac{1}{2}\int|f-g|d\gamma\)이다.
중요하다
\(\mu_n,n\ge 1\) and \(\mu\) are probability measures having densities \(f_n\) and \(f\), respectively, w.r.t some dominating measure \(\gamma\). If \[ f_n\rightarrow f\mbox{ }\mbox{ }\mbox{ } \gamma\mbox{-a.e. }\mbox{ as }n\rightarrow \infty, \] then \(\mu_n\) converges to \(\mu\) in total variation norm, i.e., \[ \sup_{A\in\mathcal{R}}|\mu_n(A)-\mu(A)|\rightarrow 0. \]
증명: \(f_n\rightarrow f\) \(\gamma\)-a.e.\(\implies 0\le (f-f_n)^+\le |f-f_n|\rightarrow 0\) \(\gamma\)-a.e.이다.
즉, \((f-f_n)^+\rightarrow 0\) \(\gamma\)-a.e.이다.
또한 \(f,f_n\ge 0\)이기 때문에 \((f-f_n)^+\le f\in L^1\)이다.
때문에 D.C.T에 의해 \(\int (f-f_n)^+ d\gamma\rightarrow 0\)이다.
또한 \[ 0\stackrel{\text{prob}=1}{=}\int (f-f_n)d\gamma= \int (f-f_n)^+d\gamma- \int (f-f_n)^-d\gamma\implies \int (f-f_n)^+d\gamma= \int (f-f_n)^-d\gamma \] 이다.
그러므로 \[ \int |f-f_n|d\gamma= \int (f-f_n)^+d\gamma+\int (f-f_n)^-d\gamma= 2\int (f-f_n)^+d\gamma\rightarrow 0. \] 때문에 위의 lemma에 따르면 \[ \sup_{A\in\mathcal{R}}|\mu_n(A)-\mu(A)|=\frac{1}{2}\int|f_n-f|d\gamma \rightarrow 0. \]