Remark

\((\mathbb{R}, \mathcal{R})\)에서의 probability measures \(\mu_n\) and \(\mu\)에 대해 아래의 조건은 \((3\implies 2\implies 1)\)이다 (progressively stronger forms);

  1. \(\mu_n\leadsto \mu\).

  2. \(\mu(A)\rightarrow \mu(A)\) for all \(A\in \mathcal{R}\).

  3. \(\sup_{A\in \mathcal{R}}|\mu_n(A)-\mu(A)|\rightarrow 0\).





Scheffe’s theorem을 위해 필요

Lemma

If \(\mu\) and \(\nu\) are probability measures, with densities \(f\) and \(g\) w.r.t some dominating measure \(\gamma\), then

\[ \sup_{A\in \mathcal{F}}|\mu(A)-\nu(A)|=\frac{1}{2}\int|f-g|d\gamma. \]



\[\begin{eqnarray*} |\mu(A)-\nu(A)|&=&\left| \int_A (f-g)d\gamma \right|\\ &=& \frac{1}{2}\left| \int_A (f-g)d\gamma \right|+ \frac{1}{2}\left| \int_{A^c} (f-g)d\gamma \right|\\ &\le&\frac{1}{2}\int_A \left| f-g\right|d\gamma + \frac{1}{2} \int_{A^c} \left|f-g\right|d\gamma \\ &=&\frac{1}{2}\int \left| f-g\right|d\gamma. \end{eqnarray*}\]

\[\begin{eqnarray*} |\mu(A)-\nu(A)|&=& \frac{1}{2}\left| \int_A (f-g)d\gamma \right|+ \frac{1}{2}\left| \int_{A^c} (f-g)d\gamma \right|\\ &=&\frac{1}{2}\left|\int_A (f-g)d\gamma\right| + \frac{1}{2}\left|\int_{A^c} (g-f)d\gamma\right| \\ &=&\frac{1}{2}\int_A \left| f-g\right|d\gamma+\frac{1}{2}\int_{A^c} \left| f-g\right|d\gamma= \frac{1}{2}\int \left| f-g\right|d\gamma. \end{eqnarray*}\] 즉, \(\sup_{A\in \mathcal{F}}|\mu(A)-\nu(A)|=\frac{1}{2}\int|f-g|d\gamma\)이다.



중요하다

Theorem (Scheffe’s Theorem)

\(\mu_n,n\ge 1\) and \(\mu\) are probability measures having densities \(f_n\) and \(f\), respectively, w.r.t some dominating measure \(\gamma\). If \[ f_n\rightarrow f\mbox{ }\mbox{ }\mbox{ } \gamma\mbox{-a.e. }\mbox{ as }n\rightarrow \infty, \] then \(\mu_n\) converges to \(\mu\) in total variation norm, i.e., \[ \sup_{A\in\mathcal{R}}|\mu_n(A)-\mu(A)|\rightarrow 0. \]




back