Theorem

If \(X\) is an integrable random variable on \((\Omega, \mathcal{F}, P)\), and \(\mathcal{G}\) is a sub-\(\sigma\)-field of \(\mathcal{F}\), then there exists a \(\mathcal{G}\)-measurable random variable \(Y\), unique up to almost sure equality, which satisfies \[ \int_A Y dP = \int_A X dP \mbox{ }\mbox{ }\mbox{ for all }A\in \mathcal{G}. \]




Definition(Conditional Expectation)

Let \(X\) be an integrable random variable on a probability space \((\Omega, \mathcal{F},P)\) and let \(\mathcal{G}\) be a \(\sigma\)-filed with \(\mathcal{G}\subset \mathcal{F}\). Then, the conditional expectation of \(X\) given \(\mathcal{G}\), denoted \(E(X|\mathcal{G})\) is defined to be that random variable, unique up to almost sure equality, satsfying two conditions:

  1. \(E(X|\mathcal{G})\) is \(\mathcal{G}\)-measurable, and

  2. \(\int_A E(X|\mathcal{G})=\int_A X dP\) for all \(A\in \mathcal{G}\).

Any random variable \(Y\) satisfying 1,2 is said to be a version of \(E(X|\mathcal{G})\).





예제

  1. \(\mathcal{G}=\{\phi,\Omega\}\)라 하자. 이는 당연히 \(\sigma\)-field이다. 또한 constant mapping \(\omega\mapsto E(X)\)\(\mathcal{G}\)-measurable이고, \(A\in \mathcal{G}=\{\phi,\Omega\}\)에 대해 \(\int_AE(X)dP=\int_A X dP\)이다. 때문에 \(E(X)\) 는 version of \(E(X|\mathcal{G})\)이다.


  1. \(B\in \mathcal{F}\), \(0<P(B)<1\)이라고 하자. 또한 \(\mathcal{G}=\{\phi,\Omega,B,B^c\}\)라고 하자. 그렇다면 \[ E(X|\mathcal{G})(\omega)=\begin{cases}\frac{1}{P(B)}\int_B X\mbox{ }dP,& \mbox{ if }\omega\in B,\\ \frac{1}{P(B^c)}\int_{B^c} X\mbox{ }dP,& \mbox{ if }\omega\in B^c, \end{cases} =\left( \frac{1}{P(B)}\int_B X \mbox{ }dP\right)I_B(\omega)+ \left( \frac{1}{P(B^c)}\int_{B^c} X \mbox{ }dP\right)I_{B^c}(\omega) \] 는 위의 정의에서의 2가지 조건을 만족한다(즉 조건부 기댓값을 이와 같이 elaboration할 수 있고 이는 version of \(E(X|\mathcal{G})\)이다).




Definition

If \(\mathcal{G}\) is a sub-\(\sigma\)-field of \(\mathcal{F}\) and \(A\in \mathcal{F}\), then the conditional probability of \(A\) given \(\mathcal{G}\), denoted \(P(A|\mathcal{G})\) is defined to be \(P(A|\mathcal{G})=E(I_A|\mathcal{G})\).



\[ P(A|\mathcal{G})= E(I_A|\mathcal{G})(\omega)=\begin{cases}\frac{P(A\cap B)}{P(B)},& \mbox{ if }\omega\in B,\\ \frac{P(A\cap B^c)}{P(B^c)},& \mbox{ if }\omega\in B^c.\end{cases} \]
즉, \(\mathcal{G}\)의 set \(B\)에 대해서는 \(P(A|B)=\frac{P(A\cap B)}{P(B)}\), \(B^c\)에 대해서는 \(P(A|B^c)= \frac{P(A\cap B^c)}{P(B^c)}\)라는 표현이 \(P(A|\mathcal{G})\)로부터 비롯된다.



Definition

If \(X\) is an integrable r.v and \(Y\) is a random vector, both defined on a common probability space \((\Omega, \mathcal{F}, P)\), then the conditional expectation of \(X\) given \(Y\), denoted \(E(X|Y)\) is defined to be \(E[X|\sigma(Y)]\).


Similarly, if \(\{Y_t,t\in T\}\) is any collection of r.vs defined on \((\Omega, \mathcal{F},P)\), then the conditional expectation of \(X\) given \(\{Y_t,t\in T\}\), denoted \(E(X|Y_t,t\in T)\) is defined to be \(E[X|\sigma(Y_t,t\in T)]\).




back